Насыщенный и ненасыщенный пар. Насыщенный пар и его свойства

Жидкости имеют свойство испаряться. Если бы мы капнули на стол по капле воды, эфира и ртути (только не делайте этого в домашних условиях!), смогли бы наблюдать, как постепенно капли исчезают – испаряются. Одни жидкости испаряются быстрее, другие медленнее. Процесс испарения жидкости еще называется парообразованием. А обратный процесс превращения пара в жидкость – конденсацией.

Эти два процесса иллюстрируют фазовый переход – процесс перехода веществ из одного агрегатного состояния в другое:

  • испарение (переход из жидкого в газообразное состояние);
  • конденсация (переход из газообразного состояния в жидкое);
  • десублимация (переход из газообразного состояния в твердое, минуя жидкую фазу);
  • возгонка, она же сублимация (переход из твердого в газообразное состояние, минуя жидкое).

Сейчас, к слову, подходящий сезон, чтобы наблюдать процесс десублимации в природе: иней и изморозь на деревьях и предметах, морозные узоры на окнах – ее результат.

Как образуется насыщенный и ненасыщенный пар

Но вернемся к парообразованию. Мы продолжим экспериментировать и нальем жидкость – воду, например, в открытый сосуд, а к нему подсоединим манометр. Невидимое глазу, в сосуде происходит испарение. Все молекулы жидкости находятся в непрерывном движении. Некоторые движутся так быстро, что их кинетическая энергия оказывается сильнее той, что связывает молекулы жидкости вместе.

Покинув жидкость, эти молекулы продолжают хаотически двигаться в пространстве, подавляющее их большинство рассеивается в нем – так образуется ненасыщенный пар . Лишь небольшая их часть возвращается обратно в жидкость.

Если закроем сосуд, молекул пара постепенно будет становиться все больше. И все больше их будет возвращаться в жидкость. При этом будет увеличиваться давление пара. Это зафиксирует подсоединенный к сосуду манометр.

Спустя какое-то время число молекул, вылетающих из жидкости и возвращающихся в нее, сравняется. Давление пара перестанет изменяться. В результате насыщения пара установится термодинамическое равновесие системы жидкость-пар. То есть испарение и конденсация будут равны.

Свойства насыщенного пара

Чтобы их проиллюстрировать наглядно, используем еще один эксперимент. Призовите всю силу своего воображения, чтобы представить его. Итак, возьмем ртутный манометр, состоящий из двух колен – сообщающихся трубок. В оба налита ртуть, один конец открыт, второй запаян и над ртутью в нем находится еще некоторое количество эфира и его насыщенного пара. Если опускать и поднимать не запаянное колено, уровень ртути в запаянном будет также опускаться и подниматься.

При этом будет изменяться и количество (объем) насыщенного пара эфира. Разность уровней ртутных столбиков в обоих коленах манометра показывает давление насыщенного пара эфира. Оно будет сохраняться неизменным все время.

Отсюда вытекает свойство насыщенного пара – его давление не зависит от занимаемого им объема. Давление насыщенных паров различных жидкостей (воды и эфира, к примеру) разное при одинаковой температуре.

Однако температура насыщенного пара имеет значение. Чем выше температура, тем выше и давление. Давление насыщенного пара с увеличением температуры возрастает быстрее, чем это происходит с ненасыщенным паром. Температура и давление ненасыщенного пара связаны линейной зависимостью.

Можно провести еще один любопытный опыт. Взять пустую колбу без паров жидкости, закрыть ее и подсоединить манометр. Постепенно, по капле, подавать внутрь колбы жидкость. По мере поступления жидкости и ее испарения устанавливается давление насыщенного пара, наибольшее для данной жидкости при данной температуре.

Еще о температуре и насыщенном паре

Температура пара влияет и на скорость конденсации. Так же, как температура жидкости определяет скорость испарения – число молекул, которые вылетают с поверхности жидкости в единицу времени, другими словами.

У насыщенного пара его температура равна температуре жидкости. Чем выше температура насыщенного пара, тем выше его давление и плотность, ниже плотность жидкости. При достижении критической для вещества температуры плотность жидкости и пара одинаковая. Если температура пара выше критической для вещества температуры, физические различия между жидкостью и насыщенным паром стираются.

Определение давления насыщенного пара в смеси с другими газами

Мы сказали о неизменном при постоянной температуре давлении насыщенного пара. Мы определяли давление в «идеальных» условиях: когда в сосуде или колбе присутствуют жидкость и пар только одного вещества. Рассмотрим еще эксперимент, в котором молекулы вещества рассеяны в пространстве в смеси с другими газами.

Для этого возьмем два открытых стеклянных цилиндра и поместим в оба закрытые сосуды с эфиром. Как водится, подсоединим манометры. Один сосуд с эфиром раскрываем, после чего манометр фиксирует повышение давления. Разность между этим давлением и давлением в цилиндре с закрытым сосудом эфира и позволяет узнать давление насыщенного пара эфира.

О давлении и кипении

Испарение возможно не только с поверхности жидкости, но и в ее объеме – тогда его называют кипением. При повышении температуры жидкости образуются пузырьки пара. Когда давление насыщенного пара больше либо равно давлению газа в пузырьках, жидкость испаряется внутрь пузырьков. А те расширяются и поднимаются на поверхность.

Жидкости кипят при разных температурах. В обычных условиях вода закипает при 100 0 С. Но с изменением атмосферного давления меняется и температура кипения. Так, в горах, где воздух сильно разрежен и атмосферное давление ниже, по мере подъема в горы снижается и температура кипения воды.

Кстати, в герметично закрытом сосуде кипение невозможно вообще.

Еще один пример взаимосвязи давления пара и испарения демонстрирует такая характеристика содержания паров воды в воздухе, как относительная влажность воздуха. Она представляет собой отношение парциального давления паров воды к давлению насыщенного пара и определяется по формуле: φ = р/р о * 100%.

При понижении температуры воздуха концентрация водяных паров в нем повышается, т.е. они становятся более насыщенными. Эта температура называется точкой росы.

Подведем итоги

На несложных примерах мы разобрали суть процесса испарения и образующиеся в его результате ненасыщенный и насыщенный пар. Все эти явления вы ежедневно можете наблюдать вокруг себя: например, видеть высыхающие после дождя лужи на улицах или запотевшее от пара зеркало в ванной комнате. В ванной вы даже можете наблюдать, как сначала происходит парообразование, а потом конденсация скопившейся на зеркале влаги обратно в воду.

Вы также можете использовать эти знания, чтобы сделать свою жизнь более комфортной. Например, зимой во многих квартирах воздух очень сухой, и это плохо сказывается на самочувствии. Вы можете использовать современный прибор-увлажнитель, чтобы сделать его более влажным. Или по старинке поставить в комнате емкость с водой: постепенно испаряясь, вода насытит воздух своими парами.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

При испарении одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших ее, снова возвращается в жидкость.

Давление насыщенного пара.

При сжатии насыщенного пара, температура которого под-держивается постоянной, равновесие сначала начнет нарушаться: плотность пара возрастет, и вследствие этого из газа в жидкость будет переходить больше молекул, чем из жидкости в газ; продолжаться это будет до тех пор, пока концентрация пара в новом объеме не станет прежней, соответствующей концентрации насыщенного пара при данной температуре (и равновесие восста-новится). Объясняется это тем, что число молекул, покидающих жидкость за единицу времени, зависит только от температуры.

Итак, концентрация молекул насыщенного пара при постоянной температуре не зависит от его объема.

Поскольку давление газа пропорционально концентрации его молекул, то и давление насыщенного пара не зависит от занимаемого им объема. Давление р 0 , при котором жидкость находит-ся в равновесии со своим паром, называют давлением насыщенного пара .

При сжатии насыщенного пара большая его часть переходит в жидкое состояние. Жидкость занимает меньший объем, чем пар той же массы. В результате объем пара при неизменной его плотности уменьшается.

Зависимость давления насыщенного пара от температуры.

Для идеального газа справедлива линейная зависимость давления от температуры при постоянном объеме. Применительно к насыщенному пару с давлением р 0 эта зависимость выражается равенством:

p 0 =nkT.

Так как давление насыщенного пара не зависит от объема, то, следова-тельно, оно зависит только от температуры.

Экспериментально определенная зависимость p 0 (T) отличается от зави-симости (p 0 =nkT ) для идеального газа.

С увеличением температуры давление насыщенного пара растет быстрее, чем давление идеального га-за (участок кривой АВ на рисунке). Это становится особенно очевидным, если провести изохору через точку A (пунктирная прямая). Происходит это потому, что при нагревании жидкости часть ее превращается в пар, и плотность пара растет. Поэтому, согласно формуле (p 0 =nkT ), давление насы-щенного пара растет не только в результате повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара. Главное различие в поведении идеального газа и насыщенного пара заключается в из-менении массы пара при изменении температуры при неизменном объеме (в закрытом сосуде) или при изменении объема при постоянной температуре. С идеальным газом ничего подобного происходить не может (молекулярно-кинетическая теория идеального газа не предусматривает фазового перехода газа в жидкость).

После испарения всей жидкости поведение пара будет соответствовать поведению идеального газа (участок ВС кривой на рисунке выше).

Ненасыщенный пар.

Если в пространстве, содержащем пары какой-либо жидкости, может происходить дальнейшее испарение этой жидкости, то пар, находящийся в этом пространстве, является ненасыщенным.

Пар, не находящийся в состоянии равновесия со своей жидкостью, называется ненасыщенным.

Ненасыщенный пар можно простым сжатием превратить в жидкость. Как только это превращение началось, пар, находящийся в равновесии с жидкостью, становится насыщенным.

Свойства насыщенного пара

Насыщенный пар и его свойства.

Кипение. критическая температура

Если в комнате оставить открытый стакан с водой, то через некоторое время вся вода из него испарится. Если же стакан накрыть крышкой, то вода в нем будет находиться неограниченно долго.

Читатель : Верно ли, что во втором случае вода в стакане не испаряется?

Когда стакан открыт, процесс испарения идет интенсивнее, чем процесс конденсации, так как перешедшие в газообразное состояние молекулы воды разлетаются по всей комнате. Когда стакан закрыт, то молекулы не могут вылететь из небольшого пространства между поверхностью воды и крышкой. Поэтому вскоре число молекул, покинувших воду, сравнивается с количеством молекул, вернувшихся в нее. Иначе: скорость процесса испарения становится равной скорости процесса конденсации.

Если жидкость и пар находятся в закрытом сосуде и в течение длительного времени не изменяется ни количество жидкости, ни количество пара, то говорят, чтожидкость и пар находятся в динамическом равновесии.

Пар, находящийся в состоянии динамического равновесия с жидкостью, называется насыщенным.

Свойства насыщенного пара

Давление насыщенного пара при данной температуре является величиной постоянной. У разных жидкостей давление насыщенного пара разное. Рассмотрим эксперимент, подтверждающий это утверждение.

В колбу, из которой предварительно откачали воздух, через воронку наливается жидкий эфир (рис. 13.1). Пары эфира создают давление, которое измеряется с помощью столбика ртути.

В начальный момент высота столбика ртути h = 760 мм, потом по мере испарения эфира она уменьшается, так как давление на ртуть со стороны паров эфира растет. Как только эфир, налитый в колбу, перестает испаряться, наступает насыщение , и давление больше не растет, сколько бы эфира ни налить в колбу.

Заметим, что чем выше температура колбы, тем больше давление насыщенных паров.

Параметры насыщенных паров удовлетворяют уравнению Менделеева–Клайперона

pV = .

Так как при данной температуре Т величины m и R постоянны для данного газа, то плотность насыщенного пара для данного вещества есть величина постоянная. Для примера в табл. 13.1 приведены сравнительные давления насыщенных паров воды и ртути при разных температурах.

Билет №1

Насыщенный пар.

Если сосуд с жидкостью плотно закрыть, то сначала количество жидкости уменьшится, а затем будет оставаться постоянным. При неизменной температуре система жидкость - пар придет в состояние теплового равновесия и будет находиться в нем сколь угодно долго. Одновременно с процессом испарения происходит и конденсация, оба процесса в среднем компенсируют друг друга.

В первый момент, после того как жидкость нальют в сосуд и закроют его, жидкость будет испаряться и плотность пара над ней будет увеличиваться. Однако одновременно с этим будет расти и число молекул, возвращающихся в жидкость. Чем больше плотность пара, тем большее число его молекул возвращается в жидкость. В результате в закрытом сосуде при постоянной температуре установится динамическое (подвижное) равновесие между жидкостью и паром, т. е. число молекул, покидающих поверхность жидкости за некоторый промежуток времени, будет равно в среднем числу молекул пара, возвратившихся за то же время в жидкость.

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным паром. Это определение подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара.

Давление насыщенного пара.

Что будет происходить с насыщенным паром, если уменьшить занимаемый им объем? Например, если сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержимого цилиндра постоянной.

При сжатии пара равновесие начнет нарушаться. Плотность пара в первый момент немного увеличится, и из газа в жидкость начнет переходить большее число молекул, чем из жидкости в газ. Ведь число молекул, покидающих жидкость в единицу времени, зависит только от температуры, и сжатие пара это число не меняет. Процесс продолжается до тех пор, пока вновь не установится динамическое равновесие и плотность пара, а значит, и концентрация его молекул не примут прежних своих значений. Следовательно, концентрация молекул насыщенного пара при постоянной температуре не зависит от его объема.

Так как давление пропорционально концентрации молекул (p=nkT), то из этого определения следует, что давление насыщенного пара не зависит от занимаемого им объема.

Давление p н.п. пара, при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара.

Зависимость давления насыщенного пара от температуры

Состояние насыщенного пара, как показывает опыт, приближенно описывается уравнением состояния идеального газа, а его давление определяется формулой

С ростом температуры давление растет. Так как давление насыщенного пара не зависит от объема, то, следовательно, оно зависит только от температуры.

Однако зависимость р н.п. от Т, найденная экспериментально, не является прямо пропорциональной, как у идеального газа при постоянном объеме. С увеличением температуры давление реального насыщенного пара растет быстрее , чем давление идеального газа (рис. участок кривой 12). Почему это происходит?

При нагревании жидкости в закрытом сосуде часть жидкости превращается в пар. В результате согласно формуле Р = nкТ давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара. В основном увеличение давления при повышении температуры определяется именно увеличением концентрации.

(Главное различие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара. Жидкость частично превращается в пар, или, напротив, пар частично конденсируется. С идеальным газом ничего подобного не происходит.)

Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет возрастать прямо пропорционально абсолютной температуре (см. рис., участок кривой 23).

Кипение.

Кипение – это интенсивный переход вещества из жидкого состояния в газообразное, происходящее по всему объему жидкости (а не только с ее поверхности). (Конденсация – обратный процесс.)

По мере увеличения температуры жидкости интенсивность испарения увеличивается. Наконец, жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар.

При каких условиях начинается кипение?

В жидкости всегда присутствуют растворенные газы, выделяющиеся на дне и стенках сосуда, а также на взвешенных в жидкости пылинках, которые являются центрами парообразования. Пары жидкости, находящиеся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создает характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Понаблюдайте внимательно за чайником на плите. Вы обнаружите, что перед закипанием он почти перестает шуметь.

Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давление насыщенного пара внутри него немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости.

Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости.

Чем больше внешнее давление, тем выше температура кипения.

И наоборот, уменьшая внешнее давление, мы тем самым понижаем температуру кипения. Откачивая насосом воздух и пары воды из колбы, можно заставить воду кипеть при комнатной температуре.

У каждой жидкости своя температура кипения (которая остается постоянной, пока вся жидкость не выкипит), которая зависит от давления ее насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения жидкости.

Удельная теплота парообразования.

Кипение происходит с поглощением теплоты.

Большая часть подводимой теплоты расходуется на разрыв связей между частицами вещества, остальная часть - на работу, совершаемую при расширении пара.

В результате энергия взаимодействия между частицами пара становится больше, чем между частицами жидкости, поэтому внутренняя энергия пара больше, чем внутренняя энергия жидкости при той же температуре.

Количество теплоты, необходимое для перевода жидкости в пар в процессе кипения можно расчитать по формуле:

где m - масса жидкости (кг),

L - удельная теплота парообразования (Дж/кг)

Удельная теплота парообразования показывает, какое количество теплоты необходимо, чтобы превратитъ в пар 1 кг данного вещества при температуре кипения. Единица удельной теплоты парообразования в системе СИ:

[ L ] = 1 Дж/ кг

Влажность воздуха и ее измерение.

В окружающем нас воздухе практически всегда находится некоторое количество водяных паров. Влажность воздуха зависит от количества водяного пара, содержащегося в нем.

Сырой воздух содержит больший процент молекул воды, чем сухой.

Большое значение имеет относительная влажность воздуха, сообщения о которой каждый день звучат в сводках метеопрогноза.

Относительная влажность - это отношение плотности водяного пара, содержащегося в воздухе, к плотности насыщенного пара при данной температуре, выраженное в процентах. (показывает, насколько водяной пар в воздухе близок к насыщению)

Точка росы

Сухость или влажность воздуха зависит от того, насколько близок его водяной пар к насыщению.

Если влажный воздух охлаждать, то находящийся в нем пар можно довести до насыщения, и далее он будет конденсироваться.

Признаком того, что пар насытился является появление первых капель сконденсировавшейся жидкости - росы.

Температура, при которой пар, находящийся в воздухе, становится насыщенным, называется точкой росы.

Точка росы также характеризует влажность воздуха.

Примеры: выпадение росы под утро, запотевание холодного стекла, если на него подышать, образование капли воды на холодной водопроводной трубе, сырость в подвалах домов.

Для измерения влажности воздуха используют измерительные приборы - гигрометры. Существуют несколько видов гигрометров, но основные: волосной и психрометрический. Так как непосредственно измерить давление водяных паров в воздухе сложно, относительную влажность воздуха измеряют косвенным путем.

Известно, что от относительной влажности воздуха зависит скорость испарения. Чем меньше влажность воздуха, тем легче влаге испаряться .

В психрометре есть два термометра. Один - обычный, его называют сухим. Он измеряет температуру окружающего воздуха. Колба другого термометра обмотана тканевым фитилем и опущена в емкость с водой. Второй термометр показывает не температуру воздуха, а температуру влажного фитиля, отсюда и название увлажненный термометр. Чем меньше влажность воздуха, тем интенсивнее испаряется влага из фитиля, тем большее количество теплоты в единицу времени отводится от увлажненного термометра, тем меньше его показания, следовательно, тем больше разность показаний сухого и увлажненного термометров.насыщения = 100 °С и удельные характеристики состояния насыщенной жидкости и сухого насыщенного пара v"=0,001 v""=1,7 ... влажный насыщенный пар со степенью сухости Вычисляем экстенсивные характеристики влажного насыщенного пара по...

  • Анализ промышленной опасности при эксплуатации системы улавливания паров нефти при сливе из цист

    Реферат >> Биология

    Пределы воспламенения (по объему). Давление насыщенных паров при Т = -38 оС... воздействию солнечной радиации, концентрация насыщения будет определяться ни температурой... воздействию солнечной радиации, концентрация насыщения будет определяться ни температурой...

  • Жидкости имеют свойство испаряться. Если бы мы капнули на стол по капле воды, эфира и ртути (только не делайте этого в домашних условиях!), смогли бы наблюдать, как постепенно капли исчезают – испаряются. Одни жидкости испаряются быстрее, другие медленнее. Процесс испарения жидкости еще называется парообразованием. А обратный процесс превращения пара в жидкость – конденсацией.

    Эти два процесса иллюстрируют фазовый переход – процесс перехода веществ из одного агрегатного состояния в другое:

    • испарение (переход из жидкого в газообразное состояние);
    • конденсация (переход из газообразного состояния в жидкое);
    • десублимация (переход из газообразного состояния в твердое, минуя жидкую фазу);
    • возгонка, она же сублимация (переход из твердого в газообразное состояние, минуя жидкое).

    Сейчас, к слову, подходящий сезон, чтобы наблюдать процесс десублимации в природе: иней и изморозь на деревьях и предметах, морозные узоры на окнах – ее результат.

    Как образуется насыщенный и ненасыщенный пар

    Но вернемся к парообразованию. Мы продолжим экспериментировать и нальем жидкость – воду, например, в открытый сосуд, а к нему подсоединим манометр. Невидимое глазу, в сосуде происходит испарение. Все молекулы жидкости находятся в непрерывном движении. Некоторые движутся так быстро, что их кинетическая энергия оказывается сильнее той, что связывает молекулы жидкости вместе.

    Покинув жидкость, эти молекулы продолжают хаотически двигаться в пространстве, подавляющее их большинство рассеивается в нем – так образуется ненасыщенный пар . Лишь небольшая их часть возвращается обратно в жидкость.

    Если закроем сосуд, молекул пара постепенно будет становиться все больше. И все больше их будет возвращаться в жидкость. При этом будет увеличиваться давление пара. Это зафиксирует подсоединенный к сосуду манометр.

    Спустя какое-то время число молекул, вылетающих из жидкости и возвращающихся в нее, сравняется. Давление пара перестанет изменяться. В результате насыщения пара установится термодинамическое равновесие системы жидкость-пар. То есть испарение и конденсация будут равны.

    Свойства насыщенного пара

    Чтобы их проиллюстрировать наглядно, используем еще один эксперимент. Призовите всю силу своего воображения, чтобы представить его. Итак, возьмем ртутный манометр, состоящий из двух колен – сообщающихся трубок. В оба налита ртуть, один конец открыт, второй запаян и над ртутью в нем находится еще некоторое количество эфира и его насыщенного пара. Если опускать и поднимать не запаянное колено, уровень ртути в запаянном будет также опускаться и подниматься.

    При этом будет изменяться и количество (объем) насыщенного пара эфира. Разность уровней ртутных столбиков в обоих коленах манометра показывает давление насыщенного пара эфира. Оно будет сохраняться неизменным все время.

    Отсюда вытекает свойство насыщенного пара – его давление не зависит от занимаемого им объема. Давление насыщенных паров различных жидкостей (воды и эфира, к примеру) разное при одинаковой температуре.

    Однако температура насыщенного пара имеет значение. Чем выше температура, тем выше и давление. Давление насыщенного пара с увеличением температуры возрастает быстрее, чем это происходит с ненасыщенным паром. Температура и давление ненасыщенного пара связаны линейной зависимостью.

    Можно провести еще один любопытный опыт. Взять пустую колбу без паров жидкости, закрыть ее и подсоединить манометр. Постепенно, по капле, подавать внутрь колбы жидкость. По мере поступления жидкости и ее испарения устанавливается давление насыщенного пара, наибольшее для данной жидкости при данной температуре.

    Еще о температуре и насыщенном паре

    Температура пара влияет и на скорость конденсации. Так же, как температура жидкости определяет скорость испарения – число молекул, которые вылетают с поверхности жидкости в единицу времени, другими словами.

    У насыщенного пара его температура равна температуре жидкости. Чем выше температура насыщенного пара, тем выше его давление и плотность, ниже плотность жидкости. При достижении критической для вещества температуры плотность жидкости и пара одинаковая. Если температура пара выше критической для вещества температуры, физические различия между жидкостью и насыщенным паром стираются.

    Определение давления насыщенного пара в смеси с другими газами

    Мы сказали о неизменном при постоянной температуре давлении насыщенного пара. Мы определяли давление в «идеальных» условиях: когда в сосуде или колбе присутствуют жидкость и пар только одного вещества. Рассмотрим еще эксперимент, в котором молекулы вещества рассеяны в пространстве в смеси с другими газами.

    Для этого возьмем два открытых стеклянных цилиндра и поместим в оба закрытые сосуды с эфиром. Как водится, подсоединим манометры. Один сосуд с эфиром раскрываем, после чего манометр фиксирует повышение давления. Разность между этим давлением и давлением в цилиндре с закрытым сосудом эфира и позволяет узнать давление насыщенного пара эфира.

    О давлении и кипении

    Испарение возможно не только с поверхности жидкости, но и в ее объеме – тогда его называют кипением. При повышении температуры жидкости образуются пузырьки пара. Когда давление насыщенного пара больше либо равно давлению газа в пузырьках, жидкость испаряется внутрь пузырьков. А те расширяются и поднимаются на поверхность.

    Жидкости кипят при разных температурах. В обычных условиях вода закипает при 100 0 С. Но с изменением атмосферного давления меняется и температура кипения. Так, в горах, где воздух сильно разрежен и атмосферное давление ниже, по мере подъема в горы снижается и температура кипения воды.

    Кстати, в герметично закрытом сосуде кипение невозможно вообще.

    Еще один пример взаимосвязи давления пара и испарения демонстрирует такая характеристика содержания паров воды в воздухе, как относительная влажность воздуха. Она представляет собой отношение парциального давления паров воды к давлению насыщенного пара и определяется по формуле: φ = р/р о * 100%.

    При понижении температуры воздуха концентрация водяных паров в нем повышается, т.е. они становятся более насыщенными. Эта температура называется точкой росы.

    Подведем итоги

    На несложных примерах мы разобрали суть процесса испарения и образующиеся в его результате ненасыщенный и насыщенный пар. Все эти явления вы ежедневно можете наблюдать вокруг себя: например, видеть высыхающие после дождя лужи на улицах или запотевшее от пара зеркало в ванной комнате. В ванной вы даже можете наблюдать, как сначала происходит парообразование, а потом конденсация скопившейся на зеркале влаги обратно в воду.

    Вы также можете использовать эти знания, чтобы сделать свою жизнь более комфортной. Например, зимой во многих квартирах воздух очень сухой, и это плохо сказывается на самочувствии. Вы можете использовать современный прибор-увлажнитель, чтобы сделать его более влажным. Или по старинке поставить в комнате емкость с водой: постепенно испаряясь, вода насытит воздух своими парами.

    blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Похожие публикации