Тригонометрия с нуля: основные понятия, история. Тригонометрия Весы с экономикой записали тригонометрию

Введение

Реальные процессы окружающего мира обычно связаны с большим количеством переменных и зависимостей между ними. Описать эти зависимости можно с помощью функций. Понятие «функция» сыграло и поныне играет большую роль в познании реального мира. Знание свойств функций позволяет понять суть происходящих процессов, предсказать ход их развития, управлять ими. Изучение функций является актуальным всегда.

Цель : выявить связь тригонометрических функций с явлениями окружающего мира и показать, что данные функции находит широкое применение в жизни.

задачи :

1. Изучить литературу и ресурсы удаленного доступа по теме проекта.

2. Выяснить, какие законы природы выражаются тригонометрическими функцией.

3. Найти примеры применения тригонометрических функций в окружающем мире.

4. Проанализировать и систематизировать имеющийся материал.

5. Подготовить оформленный материал в соответствии с требованиями информационного проекта.

6. Разработать в соответствии с содержанием проекта электронную презентацию.

7. Выступить на конференции с результатами проведённой работы.

На подготовительном этапе я нашел материал по данной теме и ознакомился с ним выдвинул гипотезы сформулировали цель своего проекта. Я начал поиск необходимой информации, изучал литературу по моей теме и материалы ресурсов удаленного доступа.

На основном этапе , была подобрана и накоплена информация по теме, проанализированы найденные материалы. Я выяснил основные области применения тригонометрических функций. Все данные были обобщены и систематизированы. Затем разработан целостный окончательный вариант информационного проекта, составлена презентация по теме исследования.

На заключительном этапе была проанализированапрезентация работы на конкурс. На этом этапе также предполагалась деятельность по реализации всех поставленных задач, подведение итогов, т. е. оценка своей деятельность.

Восход и заход солнца, изменение фаз луны, чередование времен года, биение сердца, циклы в жизнедеятельности организма, вращение колеса, морские приливы и отливы - модели этих многообразных процессов описываются тригонометрическими функциями.


Тригонометрия в физике.

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения. Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения.

Механическими колебаниями называют движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f(t). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту или по струне.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис.1).

Рис.1. Механические колебательные системы.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными. Свободные колебаниясовершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными.

На рисунке 2 приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Простейшим видом колебательного процесса являются простые гармонические колебания, которые описываются уравнением:

x = m cos (ωt + f 0).

Рисунок 2- Графики координаты x(t), скорости υ(t)

и ускорения a(t) тела, совершающего гармонические колебания.

Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом.

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростьюυ.

Если бы зрение людей обладало способностью видеть звуковые, электромагнитные и радиоволны, то мы видели бы вокруг многочисленные синусоиды всевозможных видов.

Наверняка, каждый не раз наблюдал явление, когда опущенные в воду предметы сразу же меняли свои размеры и пропорции. Интересное явление, погружаешь в воду свою руку, и она сразу же превращается в руку какого-то другого человека. Почему так происходит? Ответ на этот вопрос и подробное объяснение этого явления как всегда дает физика – наука, которая может объяснить практически все, что нас окружает в этом мире.

Итак, на самом деле, при погружении в воду предметы, конечно же, не меняют ни своих размеров, ни своих очертаний. Это просто оптический эффект, то есть мы зрительно воспринимаем этот объект по-другому. Происходит это из-за свойства светового луча. Оказывается, на скорость распространения света в огромной мере влияет, так называемая оптическая плотность среды. Чем плотнее эта оптическая среда, тем медленнее распространяется луч света.

Но и изменение скорости луча света еще не объясняет в полной мере рассматриваемого нами явления. Существует и еще один фактор. Так вот, когда световой луч проходит границу между менее плотной оптической средой, например воздухом, и более плотной оптической средой, например водой, часть светового луча не проникает внутрь новой среды, а отражается от ее поверхности. Другая же часть светового луча проникает внутрь, но, уже меняя направление.

Это явление называется преломлением света, и ученые уже давно могут не просто наблюдать, но и точно рассчитывать угол этого преломления. Оказалось, что простейшие тригонометрические формулы и знание синуса угла падения и угла преломления дают возможность узнать постоянный коэффициент преломления для перехода светового луча из одной конкретной среды в другую. Например, коэффициент преломления воздуха чрезвычайно мал и составляет 1,0002926, коэффициент преломления воды чуть больше - 1,332986, алмаз преломляет свет с коэффициентом 2,419, а кремний - 4,010.

Данное явление лежит в основе, так называемой Теории радуги. Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

где n 1 =1, n 2 ≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.


Применение тригонометрии в искусстве и архитектуре.

С того времени как человек стал существовать на земле, основой улучшения быта и других сфер жизни стала наука. Основы всего, что создано человеком – это различные направления в естественных и математических науках. Одна из них – геометрия. Архитектура не единственная сфера науки, в которой используются тригонометрические формулы. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Рассмотрим пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы, тем самым найдем точку зрения (рис.4).

На рисунке 5 ситуация меняется, так как статую поднимают на высоту АС и НС увеличиваются, можно рассчитать значения косинуса угла С, по таблице найдем угол падения взгляда. В процессе можно рассчитать АН, а также синус угла С, что позволит проверить результаты с помощью основного тригонометрического тождества cos 2 a+ sin 2 a = 1.

Сравнив измерения АН в первом и во втором случаи можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу

Культовые здания во всем мире были спроектированы благодаря математике, которая может считаться гением архитектуры. Некоторые известные примеры таких зданий:Детская школа Гауди в Барселоне, Небоскрёб Мэри-Экс в Лондоне, Винодельня «Бодегас Исиос» в Испании,Ресторан в Лос-Манантиалесе в Аргентине. При проектировании этих зданий не обошлось без тригонометрии.


Тригонометрия в биологии.

Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов. Между движением небесных тел и живыми организмами на Земле существует связь. Живые организмы не только улавливают свет и тепло Солнца и Луны, но и обладают различными механизмами, точно определяющими положение Солнца, реагирующими на ритм приливов, фазы Луны и движение нашей планеты.

Биологические ритмы, биоритмы, - это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, целых организмах и популяциях. Биоритмы подразделяют на физиологические , имеющие периоды от долей секунды до нескольких минут и экологические, по длительности совпадающие с каким либо ритмом окружающей среды. К ним относят суточные, сезонные, годовые, приливные и лунные ритмы. Основной земной ритм – суточный, обусловлен вращением Земли вокруг своей оси, поэтому практически все процессы в живом организме обладают суточной периодичностью.

Множество экологических факторов на нашей планете, в первую очередь световой режим, температура, давление и влажность воздуха, атмосферное и электромагнитное поле, морские приливы и отливы, под влиянием этого вращения закономерно изменяются.

Мы на семьдесят пять процентов состоим из воды, и если в момент полнолуния воды мирового океана поднимаются на 19 метров над уровнем моря и начинается прилив, то вода, находящаяся в нашем организме так же устремляется в верхние отделы нашего тела. И у людей с повышенным давлением часто наблюдаются обострения болезни в эти периоды, а натуралисты, собирающие лекарственные травы, точно знают в какую фазу луны собирать «вершки – (плоды)», а в какую – «корешки».

Вы замечали, что в определенные периоды ваша жизнь делает необъяснимые скачки? Вдруг откуда не возьмись - бьют через край эмоции. Повышается чувствительность, которая внезапно может смениться полной апатией. Творческие и бесплодные дни, счастливые и несчастные моменты, резкие скачки настроения. Подмечено, что возможности человеческого организма меняются периодически. Эти знания лежат в основе «теории трех биоритмов».

Физический биоритм – регулирует физическую активность. В течение первой половины физического цикла человек энергичен, и достигает лучших результатов в своей деятельности (вторая половина – энергичность уступает лености).

Эмоциональный ритм – в периоды его активности повышается чувствительность, улучшается настроение. Человек становится возбудимым к различным внешним катаклизмам. Если у него хорошее настроение, он строит воздушные замки, мечтает влюбиться и влюбляется. При снижении эмоционального биоритма происходит упадок душевных сил, пропадает желание, радостное настроение.

Интеллектуальный биоритм - он распоряжается памятью, способностью к обучению, логическому мышлению. В фазе активности наблюдается подъем, а во второй фазе спад творческой активности, отсутствуют удача и успех.

Теория трех ритмов.

· Физический цикл -23 дня. Определяет энергию, силу, выносливость, координацию движения

· Эмоциональный цикл - 28 дней. Состояние нервной системы и настроение

· Интеллектуальный цикл - 33 дня. Определяет творческую способность личности

Тригонометрия встречается и в природе. Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

При полёте птицы траектория взмаха крыльев образует синусоиду.


Тригонометрия в медицине.

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.

Формула, получившая название тегеранской, была представлена широкой научной общественности на 14-й конференции географической медицины и затем - на 28-й конференции по вопросам применения компьютерной техники в кардиологии, состоявшейся в Нидерландах.

Эта формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Многим людям приходится делать кардиограмму сердца, но немногие знают, что кардиограмма человеческого сердца – график синуса или косинуса.

Тригонометрия помогает нашему мозгу определять расстояния до объектов. Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Такой вывод был сделан после серии экспериментов, участникам которых предлагалось взглянуть на окружающий мир через призмы, увеличивающие этот угол.

Такое искажение приводило к тому, что подопытные носители призм воспринимали удаленные объекты как более близкие и не могли справиться с простейшими тестами. Некоторые из участников экспериментов даже наклонялись вперед, стремясь выровнять свое тело перпендикулярно неправильно представляемой поверхности земли. Однако по происшествии 20 минут они привыкли к искаженному восприятию, и все проблемы исчезли. Это обстоятельство указывает на гибкость механизма, с помощью которого мозг приспосабливает зрительную систему к меняющимся внешним условиям. Интересно заметить, что после того, как призмы были сняты, некоторое время наблюдался обратный эффект - переоценка расстояния.

Результаты нового исследования, как можно предположить, окажутся небезынтересны инженерам, конструирующим системы навигации для роботов, а также специалистам, которые работают над созданием максимально реалистичных виртуальных моделей. Возможны и приложения в области медицины, при реабилитации пациентов с повреждениями определенных областей мозга.


Заключение

В настоящее время тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел, сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Выводы:

· Мы выяснили, что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

· Мы доказали, что тригонометрия тесно связана с физикой, биологией, встречается в природе, архитектуре и медицине.

· Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.


Литература

1. Алимов Ш.А.и др. "Алгебра и начала анализа" Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2010.

2. Виленкин Н.Я. Функции в природе и техники: Кн. для внеклас. чтения IX-XX кл. – 2-е изд., испр.-М: Просвещение, 1985.

3. Глейзер Г.И. История математики в школе: IX-X кл. - М.: Просвещение, 1983.

4. Маслова Т.Н. «Справочник школьника по математике»

5. Рыбников К.А. История математики: Учебник. - М.: Изд-во МГУ, 1994.

6. Учеба.ru

7. Math.ru «библиотека»

Тригонометрия в медицине

Руководитель: Козлова Людмила Васильевна

Цель работы: Изучить использование тригонометрии в медицине. После проделанной работы, я изучила использование тригонометрии в медицине: составление биоритмов человека, кардиологии. Она дает основу для составлений формул органов человека, что впоследствии поможет лечить любые заболевания. Данная работа рассказывает, в каких именно сферах медицины применяются знания по тригонометрии. Благодаря этой работе я выяснила основные принципы чтения электрокардиограммы и самостоятельно смогу отличить нормальный результат обследования, от ярких отклонений.

ВВЕДЕНИЕ

Актуальность: Впервые с тригонометрией я столкнулась в восьмом классе, когда мы начали изучать азы этого раздела математики. Простейшие правила определения синуса и косинуса показались мне очень легкими, поэтому не вызвали особого интереса. Позднее, когда я начала учиться в десятом классе, то было ясно сразу, что тригонометрия- это огромный раздел математики, объединяющий большое количество знаний и теории. В дальнейшем я выяснила, что знания о тригонометрии очень универсальные для всех областей деятельности. Они имеют широкое применение в астрономии, географии, теории музыки, анализ финансовых рынков, электроники, теории вероятности, статистике, биологии, медицине, фармацевтики, химии, криптографии и многие другие.

Тригономе́трия (от греч. τρίγωνον (треугольник) и греч. μέτρεο (меряю), то есть измерение треугольников) - раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии.

Термин «тригонометрия» ввел в употребление в 1595 немецкий математик и богослов Варфоломей Питиск, автор учебника по тригонометрии и тригонометрических таблиц. К концу 16 в. большинство тригонометрических функций было уже известно, хотя само это понятия еще не существовало.

Ученые обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников. По звездам вычисляли местонахождение корабля в море или направление движения каравана в пустыне. Как известно, тригонометрия применяется не только в математике, но и в других сферах науки. Данная работа рассказывает, в каких именно сферах медицины применяются знания по геометрии.

Одно из главных применений - кардиология. Аппараты ЭКГ снимают кардиограмму у людей, фиксируя удары сердца. После общения со специалистом по чтению графиков электрокардиограммы я выяснила, что график является измененной синусоидой. И здесь важна каждая неровность графика. Количество интервалов и зубцов, максимум и минимум скачков, протяженность периодов: все это играет важную роль в определении диагноза и правильности лечения.

ОСНОВНОЕ СОДЕРЖАНИЕ

ЦЕЛЬ: Изучить использование тригонометрии в медицине.

ЗАДАЧИ:

    Изучить историю тригонометрии.

    Выяснить, в каких сферах медицины применяется тригонометрия.

    Выполнить практическую часть работы, выяснить принцип, на который опираются врачи-кардиологи, читая график электрокардиограммы.

1.2.ИСТОРИЯ

Первые тригонометрические таблицы видимо были составлены Гиппархом, который сейчас известен как «отец тригонометрии».

Древнегреческие математики в своих построениях, связанных с измерением дуг круга, использовали технику хорд. Перпендикуляр к хорде, опущенный из центра окружности, делит пополам дугу и опирающуюся на неё хорду. Половина поделенной пополам хорды - это синус половинного угла, и поэтому функция синус известна также как «половина хорды». Для компенсации отсутствия таблицы хорд математики, времен Аристарха, иногда использовали хорошо известную теорему, в современной записи -

где 0° < β < α < 90°,

Первые тригонометрические таблицы были, вероятно, составлены Гиппархом Никейским (180-125 лет до н. э.). Гиппарх был первым, кто свёл в таблицы соответствующие величины дуг и хорд для серии углов. Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху.

Позднее Клавдий Птолемей (90 - 168 г. н. э.) в «Альмагесте» расширил Гиппарховы «Хорды в окружности». Тринадцать книг «Альмагеста» - самая значимая тригонометрическая работа всей античности. Позже Птолемей вывел формулу половинного угла. Птолемей использовал эти результаты для создания своих тригонометрических таблиц, которые не сохранились до наших дней.

Замена хорд синусами стала главным достижением средневековой Индии. С VIII века учёные стран Ближнего и Среднего Востока развили тригонометрию. После того как трактаты мусульманских ученых были переведены на латынь, многие идеи стали достоянием европейской и мировой науки.

2. ТРИГОНОМЕТРИЯ В МЕДИЦИНЕ

2.1.БИОРИТМЫ

Биоритмы - периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях ее организации- от молекулярных до биосферы. Одни биологические ритмы относительно самостоятельны (частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам - суточным (колебания интенсивности деления клеток, обмена веществ) .

Человек со дня рождения находится в трех , биоритмах : физическом, эмоциональном и интеллектуальном.

    Физический цикл равен 23 дням. Он определяет энергию человека, его силу, выносливость, координацию движения.

    Эмоциональный цикл (28 дня) обусловливает состояние нервной системы и настроение.

    Интеллектуальный цикл (33 дня) определяет творческую способность личности.

Любой из циклов состоит из двух полупериодов, положительного и отрицательного.

    В течение первой половины физического цикла человек энергичен и достигает лучших результатов в своей деятельности; во второй половине цикла энергичность уступает лености.

    В первой половине эмоционального цикла человек весел, агрессивен, оптимистичен, переоценивает свои возможности, во второй половине - раздражителен, легко возбудим, недооценивает свои возможности, пессимистичен, все критически анализирует.


Рис.1. Биоритмы

Модель биоритмов строят с помощью графиков тригонометрических функций. В интернете находится огромное количество сайтов, которые занимаются расчетом биоритмов. Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза.

2.2. ФОРМУЛА СЕРДЦА

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрокардиографии.

Формула, получившая название тегеранской, представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, постановку диагноза и начало лечения .

На данный момент не известна точная информация касающегося вопроса, ведутся активные работы и исследования по данной теме.

Российские ученые вывели математическую формулу сердца. Благодаря этим уравнениям можно высчитать, спрогнозировать и предотвратить любое сердечное заболевание. Единственная в России лаборатория математической физиологии действует при Екатеринбургском Институте иммунологии и физиологии.

Проблема математических описаний физиологических функций организма – вторая по значимости проблема после проблемы ДНК человека. В будущем будут вычислены формулы других органов человека, и медики с помощью элементарных уравнений смогут прогнозировать и лечить любую болезнь.

Человек - сложнейший механизм, в котором непрерывно происходят физические и химические процессы. Если все процессы, перевести на язык уравнений, то можно будет вывести единую формулу человека.

Математики создали модель сердечной мышцы, которую биологи виртуально соединили с настоящей живой тканью. В компьютерной программе ученые задают сердцу различные нагрузки и наблюдают, как оно ведет себя. Изучив всевозможные алгоритмы, имитирующие деятельность сердца, ученые смогут делать реальные прогнозы.

2. 3. ЭЛЕКТРОКАРДИОГРАММА

Примененный в практических целях в 70-х годах 19 века англичанином А.Уоллером аппарат, записывающий электрическую активность сердца, продолжает служить человеку и по сей день. Электрокардиограф позволяет выявить явные отклонения от нормального ритма сердца, такие как Инфаркт миокарда, Ийшемическая болезнь сердца, синусовая брадикардия, тахекардия,аритмия, синдром слабости синусового узла и т.п. Как же отличить нормальные снимки ЭКГ от ярко выраженных заболеваний?.

3.ПРАКТИЧЕСКАЯ ЧАСТЬ РАБОТЫ

После того, как мне удалось пообщаться со специалистом расшифровки кардиограммы в нашей больнице, я узнала множество полезной информации для моей исследовательской работы.

График электрокардиограммы является измененной синусоидой. И здесь важна каждая неровность графика. Количество интервалов и зубцов, максимум и минимум скачков, протяженность периодов: все это играет важную роль в определении диагноза и правильности лечения. Поэтому график ЭКГ всегда печатается на миллиметровой бумаге.

При расшифровке результатов ЭКГ проводят измерение продолжительности интервалов между ее составляющими. Этот расчет необходим для оценки частоты ритма, где форма и величина зубцов в разных отведениях будет показателем характера ритма, происходящих электрических явления в сердце и электрической активности отдельных участков миокарда, то есть, электрокардиограмма показывает, как работает наше сердце в тот или иной период.

Более строгая расшифровка ЭКГ производиться с помощью анализа и расчета площади зубцов при использовании специальных отведений, однако в практике, обходятся показателем направления электрической оси, которая представляет собой суммарный вектор.

Существуют разные способы расшифровки ЭКГ. Некоторые специалисты основываются на формулы и рассчитывают все по ним; так частоту сердечных сокращений можно вычислить по формуле: где R - R длительность интервала, а некоторые пользуются готовыми данными, что тоже не запрещает отечественная медицина. На рисунке 2 представлены результаты расчетов ЧСС в зависимости от интервала.


Рис.2

Рис.2. Оценка ЧЧС

Рис.3. Виды кардиограмм

На рис.3 представлены три вида кардиограммы. Первая кардиограмма здорового человека, вторая, того же человека, только с синусовой тахикардией, после физической нагрузки, а третья кардиограмма больного человека с синусовой аритмией.

ВЫВОД:

После проделанной работы, я изучила использование тригонометрии в медицине: составление биоритмов человека, кардиологии. Она дает основу для составлений формул органов человека, что впоследствии поможет лечить любые заболевания. Благодаря этой работе я выяснила основные принципы чтения электрокардиограммы и самостоятельно смогу отличить нормальный результат обследования, от ярких отклонений.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

    Электрокардиография: Учебн. пособие. -5-е издание. – М.: МЕДпресс-информ, 2001. – 312с., ил.

    Интернет источники: Анатомия коронального клапана/Профессор, доктор мед. наук Ю.П. Островский

Тригонометрия в медицине и биологии

Модель боритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Формула сердца . В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси,медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии. Формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Также тригонометрия помогает нашему мозгу определять расстояния до объектов.


1)Тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея "измерения углов" не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс

2)Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tg(x)
5.Вывод

В результате выполнения исследовательской работы:

· Я познакомился с историей возникновения тригонометрии.

· Систематизировал методы решения тригонометрических уравнений.

· Узнал о применениях тригонометрии в архитектуре, биологии, медицине.

«Юность, творчество, поиск»

МБОУ «Тирянская СОШ»

Научно-исследовательская работа по теме

«Тригонометрия и тригонометрические уравнения»

Работу выполнил

ученик 10 класса

Субботин Антон.

Руководитель

учитель математики

Кезикова Л.Н.

Нетризово

План.


  1. Введение. Стр. 3.

  2. История возникновения тригонометрии. Стр. 4.

  3. Тригонометрические уравнения. Стр. 7.
3.1. Простейшие тригонометрические уравнения. Стр. 7.

3.2. Схема решения тригонометрических уравнений. Стр. 9.

3.3. Введение вспомогательного аргумента. Стр. 11.

3.4. Универсальная тригонометрическая подстановка. Стр. 12.

3.5. Решение тригонометрических уравнений с помощью

формул. Стр. 14.

3.6. Решение тригонометрических уравнений с помощью

разложения на множители. Стр. 15.

3.7.Решение однородных тригонометрических уравнений. Стр. 16.

3.8. Решение нестандартных тригонометрических

уравнений. Стр. 17.


  1. Практические применения тригонометрии. Стр. 19.
4.1.Применение тригонометрии в искусстве и архитектуре.Стр. 19.

4.2. Тригонометрия в биологии. Стр. 21.

4.3.Тригонометрия в медицине. Стр. 22.


  1. Заключение. Стр. 23.

  2. Список литературы. Стр. 24.

  1. В в едение
В школьной программе по математике есть очень важный раздел «тригонометрия». «Тригонометрические уравнения» - одна из самых сложных тем в школьном курсе математики. Тригонометрические уравнения возникают при решении задач по планиметрии, стереометрии, астрономии, физики и в других областях. Тригонометрические уравнения и неравенства из года в год встречаются среди заданий централизованного тестирования. Я решил писать данную работу, чтобы узнать побольше об истории появления тригонометрии, способах решения тригонометрических уравнений и рассмотреть применение тригономентрии в современной жизни.

Объект исследования: тригонометрия и тригонометрические уравнения.

Предмет исследования: практическое применение тригонометрии.

Цель исследования: установить картину возникновения понятий тригонометрии и выявить примеры применения.


  1. История возникновения тригонометрии
Слово «тригонометрия» впервые встречается в 1505 г. в заглавии книги немецкого теолога и математика Бартоломеуса Питискуса (Bartholomäus Pitiscus, 1561-1613), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, геодезии и архитектуре.

Происхождение этого слова греческое: τρίγωνον - треугольник, μετρεω - мера. Иными словами, тригонометрия - наука об измерениях треугольников. Возникновение тригонометрии связано с землемерением, астрономией и строительным делом. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже 2000 лет назад

Длительную историю имеет понятие синуса. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в 3 в. до н.э. в работах великих математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем (I в. н. э.), хотя и не приобрели специального названия. Современный синус угла α, например, изучается как полухорда, на которую опирается центральный угол величиной α, или как хорда удвоенной дуги.

В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учёными. В 4-5 веках появился, в частности, уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты (476-ок. 550), именем которого назван первый индийский спутник Земли. Отрезок он назвал ардхаджива (ардха-половина, джива-тетива лука, которую напоминает хорда). Позднее привилось более краткое название джива. Арабскими математиками в IXв. слово джива (или джиба) было заменено на арабское словоджайб (выпуклость). При переводе арабских математических текстов в XIIв. это слово было заменено латинскимсинус (sinus-изгиб, кривизна).

Слово косинус намного моложе. Косинус - это сокращение латинского выражения complementlysinus, т.е. «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cosα= sin(90° - a)).

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности).

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) , Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер, т. е. факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затемнения и т. д.). Астрономов интересовали соотношения между сторонами и углами сферических треугольников. И надо заметить, что математики древности удачно справлялись с поставленными задачами.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.


  1. Тригонометрические уравнения

    1. Простейшие тригонометрические уравнения
Простейшие тригонометрические уравнения - это уравнения вида , где - одна из тригонометрических функций: , , tgx . Элементарные тригонометрические уравнения имеют бесконечно много корней. Например, уравнению удовлетворяют следующие значения: , , , и т. д. Общая формула по которой находятся все корни уравнения , где , такова:

Здесь может принимать любые целые значения, каждому из них соответствует определенный корень уравнения; в этой формуле (равно как и в других формулах, по которым решаются элементарные тригонометрические уравнения) называют параметром . Записывают обычно , подчеркивая тем самым, что параметр принимать любые целые значения.

Решения уравнения , где , находятся по формуле

Особо отметим некоторые частные случаи простейших тригонометрических уравнений, когда решение может быть записано без применения общих формул:

    1. Схема решения тригонометрических уравнений

Основная схема, которой мы будем руководствоваться при решении тригонометрических уравнений следующая:

решение заданного уравнения сводится к решению элементарных уравнений. Средства решения: преобразования, разложения на множители, замена неизвестных. Ведущий принцип: не терять корней. Это означает, что при переходе к следующему уравнению (уравнениям) мы не опасаемся появления лишних (посторонних) корней, а заботимся лишь о том, чтобы каждое последующее уравнение нашей "цепочки" (или совокупность уравнений в случае ветвления) являлось следствием предыдущего. Одним из возможных методов отбора корней является проверка. Сразу заметим, что в случае тригонометрических уравнений трудности, связанные с отбором корней, с проверкой, как правило, резко возрастают по сравнению с алгебраическими уравнениями. Ведь проверять приходится серии, состоящие из бесконечного числа членов.

Особо следует сказать о замене неизвестных при решении тригонометрических уравнений. В большинстве случаев после нужной замены получается алгебраическое уравнение. Более того, не так уж и редки уравнения, которые, хотя и являются тригонометрическими по внешнему виду, по существу таковыми не являются, поскольку уже после первого шага - замены переменных - превращаются в алгебраические, а возращение к тригонометрии происходит лишь на этапе решения элементарных тригонометрических уравнений.

Еще раз напомним: замену неизвестного следует делать при первой возможности, получившееся после замены уравнение необходимо решить до конца, включая этап отбора корней, а уж затем возвратится к первоначальному неизвестному.

Одна из особенностей тригонометрических уравнений заключается в том, что ответ во многих случаях может быть записан различными способами. Даже для решения уравнения ответ может быть записан следующим образом:

1) в виде двух серий: , , ;

2) в стандартной форме представляющей собой объединение указанных выше серий: , ;

3) поскольку , то ответ можно записать в виде , . (В дальнейшем наличие параметра , , или в записи ответа автоматически означает, что этот параметр принимает всевозможные целочисленные значения. (Исключения будут оговариваться.)

Очевидно, что тремя перечисленными случаями не исчерпываются все возможности для записи ответа рассматриваемого уравнения (их бесконечно много).

Обычно ответ записывается на основании пункта 2. Полезно запомнить следующую рекомендацию: если на решении уравнения работа не заканчивается, необходимо еще провести исследование, отбор корней, то наиболее удобна форма записи, указанная в пункте 1. (Аналогичную рекомендацию следует дать и для уравнения .)

    1. Введение вспомогательного аргумента

Стандартным путем преобразования выражений вида является следующий прием: пусть - угол, задаваемый равенствами , . Для любых и такой угол существует. Таким образом . Если , или , , , в других случаях .

Пример. Решим уравнение 12cosx - 5sinx = -13

Решение: разделим обе части уравнения на , получим

cosx - sinx = -1.

Одним из решений системы cos = 12/13, sin = 5/13 является = = arccos (12/13). Учитывая это, запишем уравнение в виде:

и, применив формулу для косинуса суммы аргументов, получим

Откуда т.е.

Эта формула и дает все решения исходного уравнения.


    1. Универсальная тригонометрическая подстановка
Многие тригонометрические уравнения можно решить с помощью формул универсальной тригонометрической подстановки

Следует отметить, что применение формул может приводить к сужению ОДЗ исходного уравнения, поскольку не определен в точках , поэтому в таких случаях нужно проверять, являются ли углы , корнями исходного уравнения.

Пример. Решим уравнение

Решение:


Обращение к функции предполагает, что , то есть ,.

По формулам универсальной тригонометрической подстановки исходное уравнение примет вид:

;

;

|:2

;


;

или

;

,;

,;

Ответ: ,; ,.
    1. Решение тригонометрических уравнений с помощью формул

Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений.

Пример.


1) Уравнения, сводящиеся к квадратным.

Это уравнение является квадратным относительно cosx. Введем замену переменных cosx=y, тогда получим уравнение: . Его корни , . Таким образом решение сводится к решению двух уравнений:

cosx=1 имеет корни ,

cosx=-2 не имеет корней.

2) Уравнения, допускающие понижение степени.

Понижение степени происходит с использованием формул:



cos2α =2cos 2 α - 1

cos2α =1-2sin 2 α

.

Выразим через cos2x.

    1. Решение тригонометрических уравнений с помощью разложения на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Пример.


1) sin2x+cosx=0

2sinxcosx+cosx=0

cosx (2sinx+1) =0


,

2) cos3x+sin5x=0


    1. Решение однородных тригонометрических уравнений
Решим уравнение .

Решение. Это уравнение однородное второй степени. Разделим обе чести уравнения на , получим: tg.

Пусть tg, тогда

, , ; , , .

Ответ. .


    1. Решение нестандартных тригонометрических уравнений
Пример 1. Решим уравнение

Решение. Преобразуем выражение :

Уравнение запишется в виде:


    1. Применение тригонометрии в искусстве и архитектуре
С того времени как человек стал существовать на земле, основой улучшения быта и других сфер жизни стала наука. Основы всего, что создано человеком – это различные направления в естественных и математических науках. Одна из них – геометрия. Архитектура не единственная сфера науки, в которой используются тригонометрические формулы. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения (рис.1)

На рис.2 ситуация меняется, так как статую поднимают на высоту АС и НС увеличиваются, можно рассчитать значения косинуса угла С, по таблице найдем угол падения взгляда. В процессе можно рассчитать АН, а также синус угла С, что позволит проверить результаты с помощью основного тригонометрического тождества cos 2 + sin 2  = 1.

Сравнив измерения АН в первом и во втором случаи можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу


РИС. 1

А
С


Н
А
РИС. 2
Н
С


    1. Тригонометрия в биологии.
Биоритмы.

Экологические ритмы: суточные, сезонные (годовые), приливные и лунные циклы

Физиологические ритмы: ритмы давления, биения сердца, артериальное давление, три биоритма, лежащие в основе «теории трех биоритмов»

Теория трех ритмов.


  • Физический цикл -23 дня. Определяет энергию, силу, выносливость, координацию движения

  • Эмоциональный цикл - 28 дней. Состояние нервной системы и настроение

  • Интеллектуальный цикл - 33 дня. Определяет творческую способность личности


    1. Тригонометрия в медицине.

  1. Бета-ритм - 14-30 Гц, активная умственная деятельность
Альфа-ритм – 8-13 Гц, монотонная, рутинная деятельность

Тета-ритм – 4-8 Гц, состояние близкое ко сну, полудрема

Дельта-ритм - 1-4 Гц, глубокий сон


  1. Многим людям приходится делать кардиограмму сердца, но немногие знают, что кардиограмма человеческого сердца – график синуса или косинуса.

  1. Заключение
В результате выполнения данной исследовательской работы:

  • Я подробнее узнал об истории возникновения тригонометрии.

  • Систематизировал методы решения тригонометрических уравнений.

  • Узнал о применениях тригонометрии в архитектуре, биологии, медицине.

Список литературы.

1. А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницин и др. "Алгебра и начала анализа" Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2010.

2. Глейзер Г.И. История математики в школе: VII-VIII кл. - М.: Просвещение, 1982.

3. Глейзер Г.И. История математики в школе: IX-X кл. - М.: Просвещение, 1983.

4. Рыбников К.А. История математики: Учебник. - М.: Изд-во МГУ, 1994.




Математическая работа
« Тригонометрия и ее практическое применение »

Выполнила:

студентка 2 курса

группы КД-207

Суворова Елена Викторовна
Руководитель:

преподаватель математики

Орлова Галина Николаевна

Введение 3

История тригонометрии 5

Архитектура 6

Биология. Медицина 7

Заключение 11


Введение 3

История тригонометрии 5

Синус, косинус, тангенс, котангенс 5

Архитектура 6

Биология. Медицина 7

Определение расстояния до недоступной точки 8

Заключение 11


Введение

Тригонометрия -одна из самых древних и интересных наук, занимающаяся изучением геометрических фигур. Наш мир невозможно представить без их существования. Эта наука имеет огромный запас различных теорем, которые постоянно применятся как при решение математических задач, так и в жизни.

Многие задаются вопросами : зачем нужна тригонометрия? Как она используется в нашем мире? С чем может быть связана тригонометрия? И вот ответы на эти вопросы. Тригонометрия или тригонометрические функции используются в астрономии (особенно для расчётов положения небесных объектов), когда требуется сферическая тригонометрия, в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятности, в статистике, в биологии, в медицинской визуализации,например, компьютерной томографии и ультразвук, в аптеках, в химии, в теории чисел, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.

Цель : уметь доказывать теоремы косинусов и синусов, применять их в решение задач, выбирать правильный ход решения при их использовании, знать, где данные теоремы применяются в жизни, рассмотреть задачи с практическим содержанием.

История тригонометрии

Слово тригонометрия впервые встречается в 1505 году в заглавии книги немецкого математика Питискуса. Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников (“ trigonan” – треугольник, “ metreo”- измеряю). Возникновение тригонометрии связано с землемерием, астрономией и строительным делом. Наибольший стимул для развития тригонометрии возник в связи с решением задач астрономии (для решения задач определения местонахождения судна, предсказания затемнения и т.д.) Начиная с 17 в. Тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т.д.



Синус, косинус, тангенс, котангенс

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Тангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к прилежащему катету.

Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему катету.

Архитектура

Широко используется тригонометрия в строительстве, а особенно в архитектуре. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения

Ситуация меняется, так как статую поднимают на высоту, поэтому расстояние от верхушки статуи до глаз человека увеличивается, следовательно и синус угла падения увеличивается. Сравнив изменения расстояния от верхушки статуи до земли в первом и во втором случаи, можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу

Биология. Медицина

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

Тригонометрия помогает нашему мозгу определять расстояния до объектов. Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея "измерения углов" не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс Гибсон (James Gibson), строивший свои выводы на основе опыта работы с пилотами военной авиации. Однако после того о теории вновь позабыли.

Определение расстояния до недоступной точки

Предположим, что нам нужно найти расстояние от пункта А до недоступного пункта В. Для этого на местности выбираем точку С, провешиваем отрезок АС и измеряем его. Затем с помощью астролябии измеряем углы А и С. На листе бумаги строим какой-нибудь треугольник А1В1С1, у которого и измеряем длины сторон А1В1 и АС1 этого треугольника. Так как треугольник АВС пропорционален треугольнику А1В1С1, то По известным расстояниям АС, А1С1 и А1В1 находим расстояние АВ. Для упрощения вычислений удобно построить треугольник А1В1С1 так, чтобы А1С1:АС=1:1000. Например, если АС=130м, то расстояние А1С1 возьмём равным 130 мм. В этом случае

поэтому, измерив расстояние А1В1 в миллиметрах, мы сразу получаем расстояние АВ в метрах. ПРИМЕР. Пусть Строим треугольник А1В1С1 так, чтобы Измеряем отрезок А1В1. Он равен 153 мм, поэтому искомое расстояние равно 153 м.

Задачи

Задача №1

Катер пересекает реку. Скорость течения v1, скорость катера относительно воды v2. Под каким углом α к берегу должен идти катер, чтобы пересечь реку за минимальное время; по кратчайшему пути?


v2

Решение:

Заключение

В ходе исследования выяснено, что изучать тригонометрию интересно и полезно, так как тригонометрия в жизни нам встречается часто.

Решение задач на вычисление способствует развитию конструктивного мышления, аналитического и логического мышления - что необходимо в современной жизни.

Установлено, что систематическая работа по формированию навыков решения задач по геометрии с применением тригонометрии способствует развитию общего интеллектуального развития учащихся, их творческих способностей, потенциала школьника, умению разбираться в создавшейся ситуации, делать нужные умозаключен, при этом главная цель - не получение результата решения задачи, а само решение задачи, как совокупность логических шагов, приводящих к получению ответа. Очень важно научиться использовать оптимальные методы решения задач, среди которых тригонометрический метод является наиболее простейшим.

Цель достигнута : Научилась доказывать теоремы косинусов и синусов, применять их в решение задач, выбирать правильный ход решения при их использовании, узнала, где данные теоремы применяются в жизни, рассмотрела задачи с практическим содержанием.

Похожие публикации