Вольт-амперная характеристика диода. Особенности вольт-амперных характеристик выпрямительных диодов Вах кремния

Что такое идеальный диод?

Основная задача обычного выпрямительного диода – проводить электрический ток в одном направлении, и не пропускать его в обратном . Следовательно, идеальный диод должен быть очень хорошим проводником с нулевым сопротивлением при прямом подключении напряжения (плюс — к аноду, минус — к катоду), и абсолютным изолятором с бесконечным сопротивлением при обратном.

Вот так это выглядит на графике:

Такая модель диода используется в случаях, когда важна только логическая функция прибора. Например, в цифровой электронике.

ВАХ реального полупроводникового диода

Однако на практике, в силу своей полупроводниковой структуры, настоящий диод обладает рядом недостатков и ограничений по сравнению с идеальным диодом. Это можно увидеть на графике, приведенном ниже.


V ϒ (гамма) — напряжение порога проводимости

При прямом включении напряжение на диоде должно достигнуть определенного порогового значения — V ϒ . Это напряжение, при котором PN-переход в полупроводнике открывается достаточно, чтобы диод начал хорошо проводить ток. До того как напряжение между анодом и катодом достигнет этого значения, диод является очень плохим проводником. V ϒ у кремниевых приборов примерно 0.7V, у германиевых – около 0.3V.

I D_MAX — максимальный ток через диод при прямом включении

При прямом включении полупроводниковый диод способен выдержать ограниченную силу тока I D_MAX . Когда ток через прибор превышает этот предел, диод перегревается. В результате разрушается кристаллическая структура полупроводника, и прибор становится непригодным. Величина данной силы тока сильно колеблется в зависимости от разных типов диодов и их производителей.

I OP – обратный ток утечки

При обратном включении диод не является абсолютным изолятором и имеет конечное сопротивление, хоть и очень высокое. Это служит причиной образования тока утечки или обратного тока I OP . Ток утечки у германиевых приборов достигает до 200 µА, у кремниевых до нескольких десятков nА. Самые последние высококачественные кремниевые диоды с предельно низким обратным током имеют этот показатель около 0.5 nA.

PIV(Peak Inverse Voltage) — Напряжение пробоя

При обратном включении диод способен выдерживать ограниченное напряжение – напряжение пробоя PIV . Если внешняя разность потенциалов превышает это значение, диод резко понижает свое сопротивление и превращается в проводник. Такой эффект нежелательный, так как диод должен быть хорошим проводником только при прямом включении. Величина напряжения пробоя колеблется в зависимости от разных типов диодов и их производителей.

В большинстве случаев, для расчетов в электронных схемах, не используют точную модель диода со всеми его характеристиками. Нелинейность этой функции слишком усложняет задачу. Предпочитают использовать, так называемые, приближенные модели.

Приближенная модель диода «идеальный диод + V ϒ »

Самой простой и часто используемой является приближенная модель первого уровня. Она состоит из идеального диода и, добавленного к нему, напряжения порога проводимости V ϒ .


Приближенная модель диода «идеальный диод + V ϒ + r D »

Иногда используют чуть более сложную и точную приближенную модель второго уровня. В этом случае добавляют к модели первого уровня внутреннее сопротивление диода, преобразовав его функцию из экспоненты в линейную.




Вах-вах-вах… Обычно эти слова употребляют, рассказывая анекдоты про кавказцев))) Кавказцев прошу не обижаться – я уважаю Кавказ. Но, как говорится, из песни слов не выкинешь. Да и в нашем случае это слово имеет другой смысл. Да и не слово это даже, а аббревиатура.

ВАХ – это вольт амперная характеристика. Ну а нас в этом разделе интересует вольт амперная характеристика полупроводникового диода .

График ВАХ диода показан на рис. 6.

Рис. 6. ВАХ полупроводникового диода.

На графике изображены ВАХ для прямого и обратного включения диода. Ещё говорят, прямая и обратная ветвь вольт-амперной характеристики. Прямая ветвь (Iпр и Uпр) отображает характеристики диода при прямом включении (то есть когда на анод подаётся «плюс»). Обратная ветвь (Iобр и Uобр) отображает характеристики диода при обратном включении (то есть когда на анод подаётся «минус»).

На рис. 6 синяя толстая линия – это характеристика германиевого диода (Ge), а чёрная тонкая линия – характеристика кремниевого (Si) диода. На рисунке не указаны единицы измерения для осей тока и напряжения, так как они зависят от конкретной марки диода.

Что же мы видим на графике? Ну для начала определим, как и для любой плоской системы координат, четыре координатных угла (квадранта). Напомню, что первым считается квадрант, который находится справа вверху (то есть там, где у нас буквы Ge и Si). Далее квадранты отсчитываются против часовой стрелки.

Итак, II-й и IV-й квадранты у нас пустые. Это потому, что мы можем включить диод только двумя способами – в прямом или в обратном направлении. Невозможна ситуация, когда, например, через диод протекает обратный ток и одновременно он включен в прямом направлении, или, иными словами, невозможно на один вывод одновременно подать и «плюс» и «минус». Точнее, это возможно, но тогда это будет короткое замыкание))). Остаётся рассмотреть только два случая – прямое включение диода и обратное включение диода .

График прямого включения нарисован в первом квадранте. Отсюда видно, что чем больше напряжение, тем больше ток. Причём до какого-то момента напряжение растёт быстрее, чем ток. Но затем наступает перелом, и напряжение почти не меняется, а ток начинает расти. Для большинства диодов этот перелом наступает в диапазоне 0,5…1 В. Именно это напряжение, как говорят, «падает» на диоде. То есть если вы подключите лампочку по первой схеме на рис. 3, а напряжение батареи питания у вас будет 9 В, то на лампочку попадёт уже не 9 В, а 8,5 или даже 8 (зависит от типа диода). Эти 0,5…1 В и есть падение напряжения на диоде. Медленный рост тока до напряжения 0,5…1В означает, что на этом участке ток через диод практически не идёт даже в прямом направлении.

График обратного включения нарисован в третьем квадранте. Отсюда видно, что на значительном участке ток почти не изменяется, а затем увеличивается лавинообразно. Что это значит? Если вы включите лампочку по второй схеме на рис. 3, то светиться она не будет, потому что диод в обратном направлении ток не пропускает (точнее, пропускает, как видно на графике, но этот ток настолько мал, что лампа светиться не будет). Но диод не может сдерживать напряжение бесконечно. Если увеличить, напряжение, например, до нескольких сотен вольт, то это высокое напряжение «пробьёт» диод (см. перегиб на обратной ветви графика) и ток через диод будет течь. Вот только «пробой» - это процесс необратимый (для диодов). То есть такой «пробой» приведет к выгоранию диода и он либо вообще перестанет пропускать ток в любом направлении, либо наоборот – будет пропускать ток во всех направлениях.

В характеристиках конкретных диодов всегда указывается максимальное обратное напряжение – то есть напряжение, которое может выдержать диод без «пробоя» при включении в обратном направлении. Это нужно обязательно учитывать при разработке устройств, где применяются диоды.

Сравнивая характеристики кремниевого и германиевого диодов, можно сделать вывод, что в p-n-переходах кремниевого диода прямой и обратный токи меньше, чем в германиевом диоде (при одинаковых значениях напряжения на выводах). Это связано с тем, что у кремния больше ширина запрещённой зоны и для перехода электронов из валентной зоны в зону проводимости им необходимо сообщить большую дополнительную энергию.

Полупроводниковые диоды и их характеристики

Диодом называют полупроводниковый прибор, который состоит из одного - перехода и имеет два вывода: анод и катод. Полупроводниковые диоды весьма многочисленны, и одним из основных классификационных признаков служит их назначение, которое связано с использованием определенного явления в- переходе.

Диоды, предназначенные для преобразования переменного тока в постоянный, называют выпрямительными. Д ля них основным является вентильный эффект (большая величина отношения прямого тока к обратному), но не предъявляется жестких требований к временным и частотным характеристикам. Они рассчитываются на значительные токи и имеют большую площадь- перехода. В реальных диодах, как правило, используются несимметричные - переходы. В таких переходах одна из областей кристалла (область с большей концентрацией основных носителей), обычно , бывает достаточно низкоомной, а другая - высокоомной. Низкоомная область является доминирующим источником подвижных носителей зарядов, и ток через диод при прямом включении перехода практически полностью определяется потоком ее основных носителей. Поэтому низкоомную область полупроводникового кристалла диода называют эмиттером. Различие в концентрации основных носителей зарядов сказывается и на расположении - перехода на границе областей с различным типом электропроводности. В связи с большей концентрацией носителей в низкоомной области (как отмечено выше) ширина - перехода в ней оказывается меньше, чем в высокоомной. Если различие в концентрации основных носителей велико, то - переход почти целиком расположится в высокоомной области, которая получила название базы.

Вольт-амперные характеристики реальных диодов и - переходов близки друг к другу, но не одинаковы (рисунок 1.6). Отличия наблюдаются как на прямой, так и на обратной ветви. Это объясняется тем, что при анализе процессов в - переходе не учитывают ни размеры кристалла и перехода, ни сопротивления полупроводниковых слоев, прилегающих к переходу. Наличие в полупроводниковом кристалле высокоомной области базы, которая характеризуется сопротивлением , приводит к дополнительному падению напряжения , в результате прямая ветвь диода проходит положе, чем впереходе. Обратная ветвь ВАХ диода проходит ниже, чем у идеальногоперехода, т.к. к току насыщения добавляется ток утечки по поверхности кристалла .

Рисунок 1.6 - Условное обозначение диода (а);

вольт-амперные характеристики (в):

1 - идеального- перехода, 2 – реального диода

Диоды могут производиться на основе германия или кремния; их ВАХ имеют существенные различия (рисунок 1.7)


Рисунок 1.7 - Вольт-амперные характеристики германиевого (1),

кремниевого (2) диодов

Сдвиг прямой ветви характеристики влево обусловлен различием в величине потенциального барьера , а положение обратной ветви определяется различием концентраций неосновных носителей, которые зависят от ширины запрещенной зоны полупроводника.

Вид вольт-амперной характеристики зависит от температуры полупроводникового кристалла (рисунок 1.8).

Рисунок 1.8 - Зависимость вида ВАХ диода от температуры

С ростом температуры уменьшается прямое падение напряжения на диоде при постоянном значении прямого тока . Прямое напряжение изменяется на 2.1 мВ при изменении температуры на 1ºС.

Обратный ток увеличивается с ростом температуры в два раза при изменении температуры на 10ºС для германиевых и в три раза для кремневых диодов, однако, следует учитывать, что обратный ток кремневых диодов на три порядка меньше, чем германиевых.

В настоящее время наибольшее распространение получили кремниевые выпрямительные диоды, которые имеют следующие преимущества:

Во много раз меньшие (по сравнению с германиевыми) обратные токи при одинаковом напряжении; высокое значение допустимого обратного напряжения, которое достигает 1000...1500 В, в то время как у германиевых диодов оно находится в пределах 100...400 Вт;

Работоспособность кремниевых диодов сохраняется при температурах от -60 до +150 °С, германиевых - лишь от -60 до +85 °С (при температуре выше 85 °С в германии резко возрастает термогенерация, что увеличивает обратный ток, и может привести к потере диодом вентильных свойств).

Однако в выпрямительных устройствах низких напряжений и больших токов выгоднее применять германиевые диоды, так как их сопротивление в прямом направлении в 1,5...2 раза меньше, чем у кремниевых при одинаковом токе нагрузки, что уменьшает мощность, рассеиваемую внутри диода.

Основные параметры выпрямительных диодов:

максимально допустимое обратное напряжение диода - значение напряжения, приложенного в обратном направлении, которое диод может выдержать в течение длительного времени без нарушения его работоспособности;

средний выпрямленный ток диода - среднее за период значение выпрямленного тока, протекающего через диод;

импульсный прямой ток диода - пиковое значение импульса тока при заданных максимальной длительности, скважности и форме импульса;

средний обратный ток диода - среднее за период значение обратного тока;

среднее прямое напряжение диода при заданном среднем значении прямого тока ;

средняя рассеиваемая мощность диода - средняя за период мощность, рассеиваемая диодом при протекании тока в прямом и обратном направлениях;

дифференциальное сопротивление диода - отношение приращения прямого напряжения на диоде к вызвавшему его малому приращению тока.

Полупроводниковым диодом называют электропреобразовательный полупроводниковый прибор с одним выпрямляющим электрическим переходом, имеющим два вывода. В качестве выпрямляющего электрического перехода используется электронно-дырочный (р-n) переход (П), разделяющий р- и n-области кристалла полупроводника (рис. 10.2).

К р- и n-области кристалла привариваются или припаиваются металлические выводы, и вся система заключается в металлический, металлокерамический, стеклянный или пластмассовый корпус.

По конструктивному выполнению различают точечные и плоскостные диоды. Широкое применение диоды получили в источниках вторичного электропитания (выпрямителях).

Одна из полупроводниковых областей кристалла, имеющая более высокую концентрацию примесей (а следовательно, и основных носителей заряда), называется эмиттером, а вторая, с меньшей концентрацией - базой. Если эмиттером является p-область, для которой основными носителями заряда служат дырки p p , а базой n-область (основные носители заряда - электроны n n), то выполняется условие p p ≥n n .

p p - обозначение дырок в p-области; тогда обозначение дырок в n-области, для которой они являются неосновными носителями зарядов, будет соответственно p n .

Принцип работы. При отсутствии внешнего напряжения, приложенного к выводам диода, в результате встречной диффузии дырок (из р- в n-область) и электронов (из n- в р-область) в объеме полупроводникового кристалла, расположенного вблизи границы раздела двух областей с различной проводимостью, окажутся некомпенсированными заряды неподвижных ионов примесей (акцепторов для р-области и доноров для n-области), которые по обе стороны раздела полупроводникового кристалла создадут область объемного заряда (рис. 10.2). Для сохранения электрической нейтральности полупроводниковой структуры количество диффундируемых через р-n-переход основных носителей заряда из одной области должно равняться количеству диффундируемых основных носителей заряда из другой области. С учетом того, что концентрация электронов n n в базе значительно меньше концентрации дырок p p в эмиттере, область объемного заряда со стороны базы будет больше, чем со стороны эмиттера, как это показано на рис. 10.2. Образованный в результате встречной диффузии объемный заряд создает напряженность E зар электрического поля, препятствующего дальнейшей встречной диффузии основных носителей зарядов.

Рис. 10.2. Схема включения полупроводникового диода и пространственное распределение объемных зарядов р-n-перехода в отсутствие внешнего напряжения

Диффузия практически прекращается, когда энергия носителей заряд недостаточна, чтобы преодолеть созданный потенциальный барьер .

Если к выводам диода приложить прямое напряжение, как это показано на рис. 10.2, то создаваемая им напряженность Е электрического поля будет противоположна направлению напряженности E зар объемного заряда и в область базы (по мере возрастания напряжения U) будет вводиться (инжектировать) все большее количество дырок, являющихся не основными для n-области базы носителями заряда, которые и образуют прямой ток диода I. Встречной инжекцией n n в область эмиттера можно пренебречь, учитывая, что p p ≥n n .

Если к выводам диода приложить обратное напряжение (-U), то создаваемая им напряженность (-Е) электрического поля, совпадая по направлению с напряженностью E зар объемного заряда, повышает потенциальный барьер и препятствует переходу основных носителей заряда в соседнюю область. Однако суммарная напряжеяностъ электрических полей способствует извлечению (экстракции) неосновных носителей заряда: n p - из р- в n-область и p n - из n- в р-область, которые и образуют обратный ток p-n-перехода. Количество неосновных носителей заряда значительно изменяется при изменении температуры, возрастая с ее повышением. Поэтому обратный ток, образованный за счет неосновных носителей, называют тепловым током (I 0).

Вольт-амперная характеристика (ВАХ) диода имеет вид, приведенный на рис. 10.3 (сплошная линия), и описывается выражением

(10.1)

где U Д - напряжение на р-n-переходе;

k - постоянная Больцмана; T - абсолютная температура; q - заряд электрона. Выражение (10.1) соответствует ВАХ идеального р-n-перехода и не отражает некоторых свойств реального диода.

При определенном значении напряжения U обр начинается лавинообразный процесс нарастания тока I обр, соответствующий электрическому пробою р-n-перехода (отрезок АВ на рис. 10.3). Если в этот момент ток не ограничить, электрический пробой переходит в тепловой (участок ВАХ после точки В). Такая последовательность лавинообразного процесса нарастания тока I обр характерна для кремниевых диодов. Для германиевых диодов с увеличением обратного напряжения тепловой пробой р-n-перехода наступает практически одновременно с началом лавинообразного процесса нарастания тока I обр. Электрический пробой обратим, т. е. после уменьшения напряжения U обр работа диода соответствует пологому участку обратной ветви ВАХ. Тепловой пробой необратим, так как разрушает р-n-переход.

Прямой ток диода также зависит от температуры окружающей среды, возрастая с ее повышением, хотя и в значительно меньшей степени, чем обратный ток. Характер изменения прямой ветви ВАХ при изменении температуры показан на рис. 10.3. Для оценки температурной зависимости прямой ветви ВАХ диода служит температурный коэффициент напряжения (ТКН), °K -1 .

Этот коэффициент показывает относительное изменение прямого напряжения за счет изменения температуры на 1 ̊К при некотором значении прямого тока.

Рис. 10.3. Вольт-амперные характеристики полупроводникового диода

Сопротивления и емкости диода. Полупроводниковый диод характеризуется статическим и дифференциальным (динамическим) сопротивлениями, легко определяемыми по ВАХ. Дифференциальное сопротивление численно равно отношению бесконечно малого приращения напряжения к соответствующему приращению тока в заданном режиме работы диода и может быть определено графически как тангенс угла наклона касательной в рассматриваемой рабочей точке Е к оси абсцисс (см. рис. 10.3):

(10.2)

где ∆U и ∆I- конечные приращения напряжения и тока вблизи рабочей точки Е; mI и mU - масштабы осей тока и напряжения.

Часто представляют интерес не приращения напряжения и тока в окрестности некоторой заданной точки, а сами напряжение и ток в данном элементе. При этом совершенно безразлично, какова характеристика диода вблизи выбранной рабочей точки. В этом случае удобно пользоваться статическим сопротивлением, которое равно отношению напряжения на элементе U E к протекающему через него току I E (рис. 10.3). Как видно из рисунка, это сопротивление равно тангенсу угла наклона прямой, проведенной из начала координат через заданную рабочую точку ВАХ, к оси абсцисс:

В зависимости от того, на каком участке ВАХ расположена заданная рабочая точка, значение R ст, может быть меньше или больше значения R диф или равно ему. Однако R ст всегда положительно, в то время как R диф может быть и отрицательным. У элементов, имеющих линейные ВАХ, статическое и дифференциальное сопротивления равны.

При работе на высоких частотах и в импульсных режимах начинает играть роль емкость диода С Д, измеряемая между выводами диода при заданных значениях напряжения и частоты. Эта емкость включает диффузионную емкость С диф, зарядную (барьерную) емкость С зар и емкость С к корпуса диода:

Диффузионная емкость возникает при прямом напряжении диода в приконтактном слое р-n-перехода за счет изменения количества диффундируемых дырок и электронов при изменении прямого напряжения. Зарядная емкость возникает при обратном напряжении и обусловлена изменением объемного заряда.

Значение емкости С Д определяется режимом работы диода. При прямом напряжении

при обратном напряжении

Классификация диодов представлена в табл. 10.1.

Таблица 10.1 Классификация диодов

Рассмотрим некоторые из них, наиболее широко применяемые в практике.

Выпрямительный диод , условное графическое обозначение которого приведено на рис. 10.4, 1, использует вентильные свойства р-n-перехода и применяется в выпрямителях переменного тока. В качестве исходного материала при изготовлении выпрямительных диодов используют германий и кремний.

Выпрямительный диод представляет собой электронный ключ, управляемый приложенным к нему напряжением. При прямом напряжении ключ замкнут, при обратном - разомкнут. Однако в обоих случаях этот ключ не является идеальным. При подаче прямого напряжения U пр ключ обладает небольшим дифференциальным сопротивлением. Поэтому за счет падения напряжения U пр на открытом диоде выпрямленное напряжение, снимаемое с нагрузочного устройства, несколько ниже входного напряжения (U пр не превышает у германневых диодов 0,5 В, а у кремниевых 1,5 В; часто за величину U пр для кремниевых диодов принимается напряжение 0,7 В).

Основными параметрами выпрямительных диодов являются:

Iпр ср max - максимальное (за период входного напряжения) значение среднего прямого тока диода;

U обр.доп - допустимое наибольшее значение постоянного обратного напряжения диода;

f max - максимально допустимая частота входного напряжения;

U пр - значение прямого падения напряжения на диоде при заданном прямом токе.

Выпрямительные диоды классифируют также по мощности и частоте.

По мощности: маломощные I пр ср max <0,3 A; средней мощности 0,3 A10 A.

По частоте: низкочастотные f max <1000 Гц; высокочастотные f max >1000 Гц.

В качестве выпрямительных применяются также диоды, выполненные на выпрямляющем переходе металл-полупроводник (диоды Шотки). Их отличает меньшее, чем у диодов с р-n-переходом, напряжение U пр и более высокие частотные характеристики.

Импульсный диод - полупроводниковый диод, имеющий малую длительность переходных процессов и использующий, так же как и выпрямительный диод, при своей работе прямую и обратную ветви ВАХ.

Длительность переходных продресов в диоде (рис. 10.4) обусловлена тем, чтo изменeние направления и значения тока через него при изменении подводимого к нему напряжения не может происходить мгновенно в связи с перезарядом емкости выпрямляющего перехода и инерционными процессами рассасывания инжектированных в базу неосновных носителей заряда. Последнее явление определяет быстродействие диодов и характеризуется специальным параметром - временем восстановления t вос его обратного сопротивления. Время восстановления равно интервалу времени между моментом переключения напряжения на диоде с прямого на обратное и моментом, когда обратный ток, который в момент переключения напряжения paвен прямому току, достигнет своего минимального значения.

Рис. 10.4. Переходные процессы в полупроводниковом диоде

Поэтому кроме параметров I пр ср max , U обр, U пр характеризующих выпрямительные свойства, для импульсных диодов вводится параметр t вос, характеризующий быстродействие.

Для повышения быстродействия (уменьшения t вос) импульсные диоды изготовляют в виде точечных структур, что обеспечивает минимальную площадь, р-n-перехода, а следовательно, и минимальное значение зарядной емкости C зар. Одновременно толщину базы делают минимально возможной для достижения минимального времени восстановления диодов.

В качестве импульсных находят применение и диоды Шотки.

Сверхвысокочастотный диод (СВЧ-диод) - полупроводниковый диод, предназначенный для преобразования и обработки высокочастотного сигнала (до десятков и сотен ГГц). Сверхвысокочастотные диоды широко применяются при генерации и усилении электромагнитных колебаний СВЧ-диапазона, умножении частоты, модуляции, регулировании и ограничении сигналов и т. д. Типичными представителями данной группы диодов являются смесительные (получение сигнала суммы или разности двух частот), детекторные (выделение постоянной составляющей СВЧ-сигнала) и переключательные (управление уровнем мощности сверхвысокочастотного сигнала) диоды. Условное графическое обозначение импульсных и СВЧ-диодов аналогично обозначению выпрямительных диодов (рис. 10.0, 1).

Стабилитрон и стабистор применяются в нелинейных цепях постоянного тока для стабилизации напряжения. Отличие стабилитрона от стабистора заключается в используемой ветви ВАХ для стабилизации напряжения. Как видно из рис. 10.3, ВАХ диода имеет участки АВ и CD, на которых значительному изменению тока соответствует незначительное изменение напряжения при сравнительно линейной их зависимости. Для стабилизации высокого напряжения (>3 В) используют обратную ветвь (участок АВ) ВАХ. Применяемые для этой цели диоды называют стабилитронами. Для стабилизации небольших значений напряжений (< 1 В -например, в интегральных схемах) используют прямую ветвь (участок CD) ВАХ, а применяемые в этом случае диоды называют стабисторами. Условное обозначение стабилитрона и стабистора показано на рис. 10.0, 2.

Стабилитроны и стабисторы изготовляют, как правило, из кремния. При использовании высоколегированного кремния (высокая концентрация примесей, а следовательно, и свободных носителей заряда) напряжение стабилизации понижается, а с уменьшением степени легирования кремния - повышается. Соответственно различают низко- и высоковольтные стабилитроны с напряжением стабилизации от 3 до 400 В.

К основным параметрам стабилитрона относятся:

U ст - напряжение стабилизации при заданном токе;

R диф - дифференциальное сопротивление при заданном токе;

I ст min - минимально допустимый ток стабилизации;

I ст max - максимально допустимый ток стабилизации;

P max - максимально допустимая рассеиваемая мощность;

где ∆U ст - отклонение напряжения U ст от номинального значения при изменении температуры в интервале ∆T.

В схемах двуполярной стабилизации напряжения применяется симметричный стабилитрон, условное графическое обозначение которого показано на рис. 10.0, 3.

Варикап - полупроводниковый диод, действие которого основано на использовании зависимости зарядной емкости C зар от значения приложенного напряжения. Это позволяет применять варикап в качестве элемента с электрически управляемой емкостью.

Основной характеристикой варикапа служит вольт-фарадная характеристика (рис. 10.5) - зависимость емкости варикапа C В, состоящей из зарядной емкости и емкости корпуса прибора, от значения приложенного обратного напряжения. В выпускаемых промышленностью варикапах значение емкости C В может изменяться от единиц до сотен пикофарад.

Рис. 10.5. Вольт-фарадная характеристика варикапа

Основными параметрами варикапа являются:

C В - емкость, измеренная между выводами варикапа при заданном обратном напряжении;

K С - коэффициент перекрытия по емкости, используемый для оценки зависимости C В =f(U обр)и равный отношению емкостей варикапа при двух заданных значениях обратного напряжения (K C =2...20).

Зависимость параметров варикапа от температуры характеризуется температурным коэффициентом емкости

где ∆C В /C В - относительное изменение емкости варикапа при изменении температуры ∆T окружающей среды.

Условное графическое обозначение варикапа приведено на 10.0, 4.

Излучающий диод - полупроводниковый диод, излучающий из области р-n-перехода кванты энергии. Излучение испускается через прозрачную стеклянную пластину, размещенную в корпусе диода.

По характеристике излучения излучающие диоды делятся на две группы: диоды с излучением в видимой области спектра, получившие название светодиоды; диоды с излучением в инфракрасной области спектра, получившие, в свою очередь, название ИК-диоды. Принцип действия обеих групп диодов одинаков и базируется на самопроизвольной рекомбинации носителей заряда при прямом токе через выпрямляющий электрический переход. Из курса физики известно, что рекомбинация носителей заряда сопровождается освобождением кванта энергии. Спектр частот последней определяется типом исходного полупроводникового материала.

Основными материалами для изготовления светодиодов служат фосфид галлия, арсенид-фосфид галлия, карбид кремния. Большую часть энергии, выделяемой в этих материалах при рекомбинации носителей заряда, составляет тепловая энергия. На долю энергии видимого излучения в лучшем случае приходится 10...20%. Поэтому кпд светодиодов невелик.

Исходными материалами для изготовления ИК-диодов являются арсенид и фосфид галлия. Полная мощность излучения этой группы диодов лежит в пределах от единиц до сотен милливатт при напряжении на диоде 1,2...3 В и прямом токе от десятков до сотен миллиампер.

Условное графическое обозначение излучающих диодов показано на рис. 10.0, 5.

Светодиоды применяют в качестве световых индикаторов, а ИК-диоды - в качестве источников излучения в оптоэлектронных устройствах.

    Выпрямительные ПП диоды. Особенности конструкции. ВАХ. Основные параметры.

    Уравнения коллекторных токов для схем включения ОБ и ОЭ.

Коэффициенты передачи тока, их соотношения.

1. Выпрямительные ПП диоды.

Выпрямительный диод предназначен для преобразования переменного напряжения в постоянное. Идеальный выпрямитель должен при одной полярности ток пропускать, при другой полярности не пропускать. Свойства полупроводникового диода близки к свойствам идеального выпрямителя, поскольку его сопротивление в прямом направлении на несколько порядков отличается от сопротивления в обратном. К основным недостаткам полупроводникового диода следует отнести: при прямом смещении -наличие области малых токов на начальном участке и конечного сопротивления rs ; при обратном - наличие пробоя.

Выпрямительные диоды предназначены для выпрямления переменного тока низкой частоты (менее 50 кГц).

Особенности конструкции.

По уровню рассеиваемой мощности различают диоды:

малой мощности (выпрямленный ток не более 300 мА);

средней мощности (выпрямленный ток от 400 мА до 10 А);

большой мощности (выпрямленный ток более 10 А);

По конструкции - точечные, плоскостные.

Применяемые полупроводниковые материалы: германий, кремний, селен, титан.

По способу изготовления : сплавные, диффузионные (рисунок 1).

Рис. 1. Структуры выпрямительных диодов.

Рисунок 2. Примеры конструкции диода.

На рисунке 2 показаны примеры конструкций диодов с различным сопротивлением: (слева-1,2-малой мощности) Rт = (100-200) °/Вт,
(справа-3-средней мощности) Rт = 1-10°/Вт.

Вольт-амперная характеристика выпрямительного диода.

Рисунок 3. ВАХ выпрямительного диода.

При электротехническом анализе схем с диодами отдельные ветви ВАХ представляют в виде прямых линий, что позволяет представить диод в виде различных эквивалентных схем. Выбор той или иной схемы замещения диода определяется конкретными условиями анализа и расчета устройства, включающего диоды.

Рисунок 4.1.

Рисунок 4.2.

Работа диода на активную нагрузку представлена на рисунке 4.1. Ток через диод описывается его вольтамперной характеристикой iд = f(uд) , ток через нагрузочное сопротивление, поскольку соединение последовательное, будет равен току через диод iд = iн = i и для него справедливо соотношение iн = (u(t) - uд)/Rн. На рисунке 4.2 в одном масштабе показаны линии, описывающие обе эти функциональные зависимости: ВАХ диода и нагрузочную характеристику.

Рисунок 4.3.

На рисунке 4.3 показано, что, чем круче характеристика диода и чем меньше зона малых токов ("пятка"), тем лучше выпрямительные свойства диода. Заход рабочей точки в предпробойную область приводит не только к выделению в диоде большой мощности и возможному его разрушению, но и к потере выпрямительных свойств.

Основными параметрами , характеризующими выпрямительные диоды, являются

Максимальный прямой ток I пр max (0.01…10 А);

Падение напряжения на диоде при заданном значении прямого тока I пр

(U пр » 0.3...0,7 В для германиевых диодов и U пр » 0,8...1,2 В -для кремниевых);

Максимально допустимое постоянное обратное напряжение диода U обр max ;

Обратный ток I обр при заданном обратном напряжении U обр (значение обратного тока германиевых диодов на два -три порядка больше, чем у кремниевых) (0.005…150 мА).;

Барьерная емкость диода при подаче на него обратного напряжения некоторой величины;

Диапазон частот, в котором возможна работа диода без существенного снижения выпрямленного тока;

Рабочий диапазон температур (германиевые диоды работают в диапазоне

60...+70°С, кремниевые - в диапазоне -60...+150°С, что объясняется малыми обратными токами кремниевых диодов).

2. Уравнения коллекторных токов.

Для схемы включения с ОБ.

Выражение для идеализированной выходной характеристики в активном режиме имеет вид:

i К =α · i Э + I КБ0 .

Для схемы включения с ОЭ.

Выражение для идеализированной выходной характеристики в активном режиме имеет вид:

i К = · i Б + I КЭ0 .

Если разорвать цепь эмиттера, то под действием обратного напряжения на коллекторе через коллекторный переход из коллектора в базу будет протекать обратный ток I КБ0 . Его величина приводится в справочных данных транзистора.

I КЭ0 =α·I КБ0 - называется сквозным тепловым током транзистора.

Схема с общим эмиттером (ОЭ).

Такая схема изображена на рисунке 5.

Рис. 5. Схема включения транзистора с общим эмиттером

Усилительные свойства транзистора характеризует один из главных его параметров - статический коэффициент передачи тока базы или статический коэффициент усиления по току β . Поскольку он должен характеризовать только сам транзистор, его определяют в режиме без нагрузки (R к = 0).

Численно он равен:

при U к-э = const

Этот коэффициент бывает равен десяткам или сотням, но реальный коэффициент k i всегда меньше, чем β, т. к. при включении нагрузки ток коллектора уменьшается.

Схема с общей базой (ОБ) .

Схема ОБ изображена на рисунке 6.

Рис. 6. Схема включения транзистора с общей базой.

Статический коэффициент передачи тока для схемы ОБ обозначается α и определяется:

при U к-б = const

Этот коэффициент всегда меньше 1 и чем он ближе к 1, тем лучше транзистор.

Соотношения для коэффициентов передачи по току для схем ОБ и ОЭ имеют вид:

K iб = i к /i э = α, K iэ = i к /i б = α./(1- α.)

Коэффициент α > 1 и составляет 49 - 200.

Похожие публикации