Научные открытия XIX века. Джеймс Кларк Максвелл: ученый и его демон


Джеймс Максвелл
(1831-1879).

Джеймс Клерк Максвелл родился в Эдинбурге 13 июня 1831 года. Вскоре после рождения мальчика родители увезли его в свое имение Гленлэр. С этого времени "берлога в узком ущелье" прочно вошла в жизнь Максвелла. Здесь жили и умерли его родители, здесь подолгу жил и похоронен он сам.

Когда Джеймсу было восемь лет, в дом пришло несчастье: тяжело заболела его мать и вскоре умерла. Теперь единственным воспитателем Джеймса стал отец, к которому он на всю жизнь сохранил чувство нежной привязанности и дружбы. Джон Максвелл был не только отцом и воспитателем сына, но и его самым верным другом.

Вскоре пришло время, когда мальчику надо было начинать учиться. Сначала приглашали учителей на дом. Но шотландские домашние учителя были такими же грубыми и невежественными, как и их английские коллеги, с таким сарказмом и ненавистью описанные Диккенсом. Поэтому решено было отдать Джеймса в новую школу, носившую громкое название Эдинбургской академии.

Мальчик постепенно втянулся в школьную жизнь. Он стал с большим интересом относиться к урокам. Особенно ему нравилась геометрия. Она на всю жизнь осталась одним из сильнейших увлечений Максвелла. Геометрические образы и модели сыграли огромную роль в его научном творчестве. С нее начался научный путь Максвелла.

Максвелл закончил академию в одном из первых выпусков. На прощанье с полюбившейся школой он сочинил гимн Эдинбургской академии, который дружно и с увлечением распевали ее воспитанники. Теперь перед ним распахнулись двери Эдинбургского университета.

Будучи студентом, Максвелл выполнил серьезное исследование по теории упругости, получившее высокую оценку специалистов. И теперь перед ним встал вопрос о перспективе его дальнейшей учебы в Кембридже.

Старейшим колледжем Кембриджа был основанный в 1284 году колледж св. Петра (Питерхауз), а наиболее знаменит - колледж св. Троицы (Тринити-колледж), основанный в 1546 году. Славу этого колледжа создал его знаменитый питомец Исаак Ньютон. Питерхауз и Тринити-колледж и были последовательно местом пребывания в Кембридже молодого Максвелла. После короткого пребывания в Питерхаузе Максвелл перевелся в Тринити-колледж.

Объем знаний Максвелла, мощь его интеллекта и самостоятельность мышления позволили ему добиться высокого места в своем выпуске. Он занял второе место.

Молодой бакалавр был оставлен в Тринити-колледже в качестве преподавателя. Но его волновали научные проблемы. Помимо его старого увлечения геометрией и проблемой цветов, которыми он начал заниматься еще в 1852 году, Максвелл заинтересовался электричеством.

20 февраля 1854 года Максвелл сообщает Томсону о своем намерении "атаковать электричество". Результатом "атаки" было сочинение "О фарадеевых силовых линиях" - первое из трех основных трудов Максвелла, посвященных изучению электромагнитного поля. Слово "поле" впервые появилось в том самом письме Томсону, но ни в этом, ни в последующем сочинении, посвященном силовым линиям. Максвелл его не употребляет. Это понятие снова появится только в 1864 году в работе "Динамическая теория электромагнитного поля".

Осенью 1856 года Максвелл вступил в должность профессора натуральной философии Маришаль-колледжа в Абердине. Кафедра натуральной философии, т. е. кафедра физики в Абердине, до Максвелла, по сути дела, не существовала, и молодому профессору пришлось организовывать учебную и научную работу по физике.

Пребывание в Абердине ознаменовалось важным событием и в личной жизни Максвелла: он женился на дочери главы Маришаль-колледжа Даниэля Дьюара Кэтрин Мери Дьюар. Произошло это событие в 1858 году. С этого времени и до конца жизни супруги Максвелл проходили свой жизненный путь рука об руку.

В 1857-1859 годах ученый провел свои расчеты движения колец Сатурна. Он показал, что жидкое кольцо при вращении разрушится возникающими в нем волнами и разобьется на отдельные спутники. Максвелл рассматривал движение конечного ряда таких спутников. Труднейшее математическое исследование принесло ему премию Адамса и славу первоклассного математика. Премированное сочинение было издано в 1859 году Кембриджским университетом.

От изучения колец Сатурна совершенно естественным был переход к рассмотрению движений молекул газа. Абердинский период жизни Максвелла закончился выступлением его на собрании Британской ассоциации 1859 года с докладом "О динамической теории газов". Этот документ положил начало многолетним и плодотворным исследованиям Максвелла в области кинетической теории газов и статистической физики.

Так как кафедру, где работал Максвелл, закрыли, ученому пришлось подыскивать новую работу. В 1860 году Максвелла избирают профессором натуральной философии Кинг-колледжа в Лондоне.

Лондонский период ознаменовался публикацией большой статьи "Пояснения к динамической теории газов", которая была опубликована в ведущем английском физическом журнале "Философский журнал" в 1860 году. Этой статьей Максвелл внес огромный вклад в новую отрасль теоретической физики - статистическую физику. Основателями статистической физики в ее классической форме считаются Максвелл, Больцман и Гиббс.

Лето 1860 года перед началом осеннего семестра в Лондоне супруги Максвелл провели в родовом имении Гленлэр. Однако отдохнуть и набраться сил Максвеллу не удалось. Он заболел оспой в тяжелой форме. Врачи опасались за его жизнь. Но необычайное мужество и терпение преданной ему Кэтрин, которая делала все, чтобы выходить больного мужа, помогли им одержать победу над страшной болезнью. Таким тяжелым испытанием началась его лондонская жизнь. В этот период своей жизни Максвелл опубликовал большую статью о цветах, а также работу "Пояснения к динамической теории газов". Но главный труд его жизни был посвящен теории электричества.

Он публикует две основные работы по созданной им теории электромагнитного поля: "О физических силовых линиях" (1861-1862) и "Динамическая теория электромагнитного поля" (1864-1865). За десять лет Максвелл вырос в крупнейшего ученого, творца фундаментальной теории электромагнитных явлений, ставшей наряду с механикой, термодинамикой и статистической физикой одним из устоев классической теоретической физики.

В этот же период жизни Максвелл начал работы по электрическим измерениям. Он был особенно заинтересован в рациональной системе электрических единиц, так как созданная им электромагнитная теория света основывалась только на совпадении отношения электростатических и электромагнитных единиц электричества со скоростью света. Вполне естественно, что он стал одним из активных членов "Комиссии единиц" Британской ассоциации. Кроме того, Максвелл глубоко понимал тесную связь науки и техники, важность этого союза как для прогресса науки, так и для технического прогресса. Поэтому с шестидесятых годов и до конца жизни он неустанно работал в области электрических измерений.

Напряженная лондонская жизнь плохо отразилась на здоровье Максвелла и его жены, и они решили пожить в своем родовом имении Гленлэре. Это решение стало неизбежным после тяжелого заболевания Максвелла в конце летнего отдыха 1865 года, который он, как обычно, проводил в своем имении. Максвелл оставил службу в Лондоне и пять лет (с 1866 по 1871 год) прожил в Гленлэре, выезжая изредка в Кембридж на экзамены, и лишь в 1867 году по совету врачей совершил путешествие в Италию. Занимаясь в Гленлэре хозяйственными делами, Максвелл не оставлял научных занятий. Он напряженно работал над главным трудом своей жизни "Трактатом по электричеству и магнетизму", написал книгу "Теория теплоты", важную работу о регуляторах, ряд статей по кинетической теории газов, участвовал в собраниях Британской ассоциации. Творческая жизнь Максвелла в деревне продолжалась столь же интенсивно, как и в университетском городе.

В 1871 году Максвелл издал в Лондоне книгу "Теория тепла". Этот учебник пользовался большой популярностью. Ученый писал, что целью его книги "Теория тепла" было изложение учения о теплоте "в той последовательности, в которой оно развивалось".

Вскоре после выхода "Теории тепла" Максвелл получил предложение занять вновь организованную кафедру экспериментальной физики в Кембридже. Он согласился и 8 марта 1871 года был назначен кавендишским профессором Кембриджского университета.

В 1873 году выходят "Трактат по электричеству и магнетизму" (в двух томах) и книга "Материя и движение".

"Материя и движение" - это небольшая книжка, посвященная изложению основ механики.

"Трактат по электричеству и магнетизму" - главный труд Максвелла и вершина его научного творчества. В нем он подвел итоги многолетней работы по электромагнетизму, начавшейся еще в начале 1854 года. Предисловие к "Трактату" датировано 1 февраля 1873 года. Девятнадцать лет работал Максвелл над своим основополагающим трудом!

Максвелл рассмотрел всю сумму знаний по электричеству и магнетизму своего времени, начиная с основных фактов электростатики и кончая созданной им электромагнитной теорией света. Он подвел итоги борьбы теорий дальнодействия и близкодействия, начавшейся еще при жизни Ньютона, посвятив последнюю главу своей книги рассмотрению теорий действия на расстоянии. Максвелл не высказался открыто против существовавших до него теорий электричества; он изложил фарадеевскую концепцию как равноправную с господствующими теориями, но весь дух его книги, его подход к анализу электромагнитных явлений были настолько новы и необычны, что современники отказывались понять книгу.

В знаменитом предисловии к "Трактату" Максвелл так характеризует цель своего труда: описать наиболее важные из электромагнитных явлений, показать, как их можно измерить и "проследить математические соотношения между измеряемыми величинами". Он указывает, что постарается "по возможности осветить связь математической формы этой теории и общей динамики, с тем чтобы в известной степени подготовиться к определению тех динамических законов, среди которых нам следовало бы искать иллюстрации или объяснения электромагнитных явлений".

Законы механики Максвелл считает основными законами природы. Не случайно поэтому в качестве фундаментальной предпосылки к основным своим уравнениям электромагнитной теории он излагает основные положения динамики. Но вместе с тем Максвелл понимает, что теория электромагнитных явлений - это качественно новая теория, не сводящаяся к механике, хотя механика и облегчает проникновение в эту новую область явлений природы.

Главные выводы Максвелла сводятся к следующему: переменное магнитное поле, возбуждаемое изменяющимся током, создает в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т. д. Изменяющиеся электрические и магнитные поля, взаимно порождая друг друга, образуют единое переменное электромагнитное поле - электромагнитную волну.

Он вывел уравнения, показывающие, что магнитное поле, создаваемое источником тока, распространяется от него с постоянной скоростью. Возникнув, электромагнитное поле распространяется в пространстве со скоростью света 300 000 км/с, занимая все больший и больший объем. Д. Максвелл утверждал, что волны света имеют ту же природу, что и волны, возникающие вокруг провода, в котором есть переменный электрический ток. Они отличаются друг от друга только длиной. Очень короткие волны и есть видимый свет.

В 1874 году он начинает большую историческую работу: изучение научного наследия ученого XVIII века Генри Кавендиша и готовит ее к печати. После исследований Максвелла стало ясно, что Кавендиш задолго до Фарадея открыл влияние диэлектрика на величину электроемкости и за 15 лет до Кулона открыл закон электрических взаимодействий.

Работы Кавендиша по электричеству с описанием экспериментов заняли большой том, вышедший в 1879 году под названием "Статьи по электричеству достопочтенного Генри Кавендиша". Это была последняя книга Максвелла, выпущенная при его жизни. 5 ноября 1879 года в Кембридже он скончался.

Джеймс-Клерк МАКСВЕЛЛ (Maxwell)

(13.6.1831, Эдинбург, - 5.11.1879, Кембридж)

Джеймс-Клерк Максвелл -- английский физик, создатель классической электродинамики, один из основателей статистической физики, родился в Эдинбурге в 1831 году.
Максвелл - сын шотландского дворянина из знатного рода Клерков. Учился в Эдинбургском (1847-50) и Кембриджском (1850-54) университетах. Член Лондонского королевского общества (1860). Профессор Маришал-колледжа в Абердине (1856-60), затем Лондонского университета (1860-65). С 1871 года Максвелл -- профессор Кембриджского университета. Там он основал первую в Великобритании специально оборудованную физическую лабораторию - Кавендишскую лабораторию, директором которой он был с 1871 года.
Научная деятельность Максвелла охватывает проблемы электромагнетизма, кинетической теории газов, оптики, теории упругости и многое другое. Свою первую работу "О черчении овалов и об овалах со многими фокусами" Максвелл выполнил, когда ему ещё не было 15 лет (1846 г., опубликована в 1851 г.). Одними из первых его исследований были работы по физиологии и физике цветного зрения и колориметрии (1852-72). В 1861 году Максвелл впервые демонстрировал цветное изображение, полученное от одновременного проецирования на экран красного, зелёного и синего диапозитивов, доказав этим справедливость трёхкомпонентной теории цветного зрения и одновременно наметив пути создания цветной фотографии. Он создал один из первых приборов для количественного измерения цвета, получившего название диска Максвелл.
В 1857-59 гг. Максвелл провёл теоретическое исследование устойчивости колец Сатурна и показал, что кольца Сатурна могут быть устойчивыми лишь в том случае, если они состоят из не связанных между собой твёрдых частиц.
В исследованиях по электричеству и магнетизму (статьи "О фарадеевых силовых линиях", 1855-56 гг.; "О физических силовых линиях", 1861-62 гг.; "Динамическая теория электромагнитного поля", 1864 г.; двухтомный фундаментальный "Трактат об электричестве и магнетизме", 1873 г.) Максвелл математически развил воззрения Майкла Фарадея на роль промежуточной среды в электрических и магнитных взаимодействиях. Он попытался (вслед за Фарадеем) истолковать эту среду как всепроникающий мировой эфир, однако эти попытки не были успешны.
Дальнейшее развитие физики показало, что носителем электромагнитных взаимодействий является электромагнитное поле , теорию которого (в классической физике) Максвелл и создал. В этой теории Максвелл обобщил все известные к тому времени факты макроскопической электродинамики и впервые ввёл представление о токе смещения, порождающем магнитное поле подобно обычному току (току проводимости, перемещающимся электрическим зарядам). Максвелл выразил законы электромагнитного поля в виде системы 4 дифференциальных уравнений в частных производных (уравнения Максвелла ).
Общий и исчерпывающий характер этих уравнений проявился в том, что их анализ позволил предсказать многие неизвестные до того явления и закономерности.
Так, из них следовало существование электромагнитных волн, впоследствии экспериментально открытых Г. Герцем. Исследуя эти уравнения, Максвелл пришёл к выводу об электромагнитной природе света (1865 г.) и показал, что скорость любых других электромагнитных волн в вакууме равна скорости света.
Он измерил (с большей точностью, чем В. Вебер и Ф. Кольрауш в 1856 году) отношение электростатической единицы заряда к электромагнитной и подтвердил его равенство скорости света. Из теории Максвелл вытекало, что электромагнитные волны производят давление.
Давление света было экспериментально установлено в 1899 П. Н. Лебедевым.
Теория электромагнетизма Максвелл получила полное опытное подтверждение и стала общепризнанной классической основой современной физики. Роль этой теории ярко охарактеризовал А. Эйнштейн: "... тут произошел великий перелом, который навсегда связан с именами Фарадея, Максвелла, Герца. Львиная доля в этой революции принадлежит Максвеллу… После Максвелла физическая реальность мыслилась в виде непрерывных, не поддающихся механическому объяснению полей... Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона ".
В исследованиях по молекулярно-кинетической теории газов (статьи "Пояснения к динамической теории газов", 1860 г., и "Динамическая теория газов", 1866 г.) Максвелл впервые решил статистическую задачу о распределении молекул идеального газа по скоростям (распределение Максвелла ). Максвелл рассчитал зависимость вязкости газа от скорости и длины свободного пробега молекул (1860), вычислив абсолютную величину последней, вывел ряд важных соотношений термодинамики (1860). Экспериментально измерил коэффициент вязкости сухого воздуха (1866). В 1873-74 гг. Максвелл открыл явление двойного лучепреломления в потоке (эффект Максвелла ).
Максвелл был крупным популяризатором науки. Он написал ряд статей для Британской энциклопедии, популярные книги - такие как "Теория теплоты" (1870), "Материя и движение" (1873), "Электричество в элементарном изложении" (1881), переведённые на русский язык. Важным вкладом в историю физики является опубликование Максвеллом рукописей работ Г. Кавендиша по электричеству (1879) с обширными комментариями.

МАКСВЕЛЛ (Maxwell), Джеймс Клерк

Английский физик Джеймс Клерк Максвелл родился в Эдинбурге в семье шотландского дворянина из знатного рода Клерков. Учился сначала в Эдинбургском (1847–1850), затем в Кембриджском (1850–1854) университетах. В 1855 г. Максвелл стал членом совета Тринити-колледжа, в 1856–1860 гг. был профессором Маришал-колледжа Абердинского университета, с 1860 г. возглавлял кафедру физики и астрономии в Кингз-колледже Лондонского университета. В 1865 г. в связи с серьезной болезнью Максвелл отказался от кафедры и поселился в своем родовом поместье Гленлэр близ Эдинбурга. Там он продолжал заниматься наукой, написал несколько сочинений по физике и математике. В 1871 г. в Кембриджском университете занял кафедру экспериментальной физики. Максвелл организовал научно-исследовательскую лабораторию, которая открылась 16 июня 1874 г. и была названа Кавендишской – в честь Генри Кавендиша .

Свою первую научную работу Максвелл выполнил еще в школе, придумав простой способ вычерчивания овальных фигур. Эта работа была доложена на заседании Королевского общества и даже опубликована в его «Трудах». В бытность членом совета Тринити-колледжа занимался экспериментами по теории цветов, выступая как продолжатель теории Юнга и теории трех основных цветов Гельмгольца . В экспериментах по смешиванию цветов Максвелл применил особый волчок, диск которого был разделен на секторы, окрашенные в разные цвета (диск Максвелла). При быстром вращении волчка цвета сливались: если диск был закрашен так, как расположены цвета спектра, он казался белым; если одну его половину закрашивали красным, а другую – желтым, он казался оранжевым; смешивание синего и желтого создавало впечатление зеленого. В 1860 г. за работы по восприятию цвета и оптике Максвелл был награжден медалью Румфорда.

В 1857 г. Кембриджский университет объявил конкурс на лучшую работу об устойчивости колец Сатурна. Эти образования были открыты Галилеем в начале XVII в. и представляли удивительную загадку природы: планета казалась окруженной тремя сплошными концентрическими кольцами, состоящими из вещества неизвестной природы. Лаплас доказал, что они не могут быть твердыми. Проведя математический анализ, Максвелл убедился, что они не могут быть и жидкими, и пришел к заключению, что подобная структура может быть устойчивой только в том случае, если состоит из роя не связанных между собой метеоритов. Устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. За эту работу Максвелл получил премию Дж. Адамса.

Одной из первых работ Максвелла стала его кинетическая теория газов. В 1859 г. ученый выступил на заседании Британской ассоциации с докладом, в котором привел распределение молекул по скоростям (максвелловское распределение). Максвелл развил представления своего предшественника в разработке кинетической теории газов Рудольфа Клаузиуса , который ввел понятие «средней длины свободного пробега». Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве. Шарики (молекулы) можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остается постоянным, хотя они могут выходить из групп и входить в них. Из такого рассмотрения следовало, что «частицы распределяются по скоростям по такому же закону, по какому распределяются ошибки наблюдений в теории метода наименьших квадратов, т.е. в соответствии со статистикой Гаусса». В рамках своей теории Максвелл объяснил закон Авогадро, диффузию, теплопроводность, внутреннее трение (теория переноса). В 1867 г. он показал статистическую природу второго начала термодинамики.

В 1831 г., в год рождения Максвелла, Майкл Фарадей проводил классические эксперименты, которые привели его к открытию электромагнитной индукции. Максвелл приступил к исследованию электричества и магнетизма примерно 20 лет спустя, когда существовали два взгляда на природу электрических и магнитных эффектов. Такие ученые, как А. М. Ампер и Ф. Нейман, придерживались концепции дальнодействия, рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами. Фарадей был приверженцем идеи силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Силовые линии заполняют все окружающее пространство (поле, по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия. Следуя Фарадею, Максвелл разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе «Фарадеевы силовые линии» (1857). В 1860–1865 гг. Максвелл создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений (уравнения Максвелла), описывающих основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е – магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е – закон сохранения количества электричества; 4-е – вихревой характер магнитного поля.

Продолжая развивать эти идеи, Максвелл пришел к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, т.е. должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3·10 10 см/с, что близко к скорости света, измеренной семью годами ранее французским физиком А. Физо. В октябре 1861 г. Максвелл сообщил Фарадею о своем открытии: свет – это электромагнитное возмущение, распространяющееся в непроводящей среде, т.е. разновидность электромагнитных волн. Этот завершающий этап исследований изложен в работе Максвелла «Динамическая теория электромагнитного поля» (1864), а итог его работ по электродинамике подвел знаменитый «Трактат об электричестве и магнетизме» (1873).

Родился Джеймс Максвелл 13 июня 1831 в столице Шотландии, городе Эдинбурге, в семье адвоката и потомственного дворянина Джона Клерка Максвелла. Детство Джеймса прошло в фамильном имении в Южной Шотландии. Его мать рано умерла, и воспитанием мальчика занимался отец. Именно он привил Джеймсу любовь к техническим наукам. В 1841 он поступил в Эдинбургскую академию. Затем, в 1847 году в течение трех лет учился в университете Эдинбурга. Здесь Максвелл изучает и развивает теорию упругости, ставит научные опыты. В 1850 – 1854 гг. учился в Кембриджском университете, который окончил со степенью бакалавра.

После завершения учебы Джеймс остается преподавать в Кембридже. В это время он начинает работу над теорией цветов, впоследствии легшей в основу цветной фотографии. Максвелл также начинает интересоваться электричеством и магнитным эффектом.

В 1856 году Джеймс Максвелл стал профессором Маришаль-колледжа в Абердине (Шотландия), проработав там до 1860 года. В июне 1858 года Максвелл женился на дочери директора колледжа. Работая в Абердине, Джеймс трудится над трактатом «Об устойчивости движения колец Сатурна»(1859), признанной и одобренной научными кругами. Одновременно с этим, Максвелл занимается разработкой кинетической теорией газов, которая легла в основу современной статистической механики, а позже, в 1866 году, им был открыт закон распределения молекул по скоростям, названный его именем.

В 1860 – 1865 гг. Джеймс Максвелл был профессором на кафедре натуральной философии в Кингс-колледже (Лондон). в 1864 году вышла его статья «Динамическая теория электромагнитного поля», которая стала главной работой Максвелла и предопределила направление его дальнейших исследований. Проблемами электромагнетизма ученый занимался вплоть до конца своей жизни.

В 1871 году Максвелл вернулся в Кембриджский университет, где возглавил первую лабораторию для физических экспериментов, названную по имени английского ученого Генри Кавендиша – Кавендишская лаборатория. Там он преподавал физику и участвовал в оснащении лаборатории.

В 1873 году ученый наконец заканчивает работу над двухтомным трудом «Трактат об электричестве и магнетизме», ставшим поистине энциклопедическим наследием в области физики.

Скончался великий ученый 5 ноября 1879 года от рака и был похоронен близ родового имения, в шотландской деревне Партон.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

Международный университет природы, общества и человека «Дубна»
Кафедра устойчивого инновационного развития
НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

на тему:


«Вклад в науку Джеймса Клерка Максвелла»

Выполнила: Плешкова А.В., гр. 5103

Проверил: Большаков Б. Е.

Дубна, 2007


Формулы, к которым мы приходим, должны быть такими, чтобы представитель любого народа, подставляя вместо символов численные значения величин, измеренные в его национальных единицах, получил бы верный результат.

Дж.К.Максвелл

Биография 5

Открытия Дж. К. Максвелла 8

Эдинбург. 1831-1850 8

Детство и школьные годы 8

Первое открытие 9

Эдинбургский университет 9

Оптико-механические исследования 9

1850-1856 Кембридж 10

Занятия электричеством 10

Абердин 1856-1860 12

Трактат о кольцах Сатурна 12

Лондон – Гленлейр 1860-1871 13

Первая цветная фотография 13

Теория вероятностей 14

Механическая модель Максвелла 14

Электромагнитные волны и электромагнитная теория света 15

Кембридж 1871-1879 16

Кавендишская лаборатория 16

Мировое признание 17

Размерность 18

Закон сохранения мощности 22

Список используемой литературы 23

Введение

Сегодня значительный интерес вызывают воззрения Дж. К. Максвелла, одного из крупнейших физиков прошлого, с именем которого связаны фундаментальные научные достижения, входящие в золотой фонд современной науки. Максвелл интересен нам как выдающийся методолог и историк науки, глубоко понимавший всю сложность и противоречивость процесса научного исследования. Анализируя взаимосвязь между теорией и действительностью, Максвелл потрясенно воскликнул: «Но кто введет меня в еще более скрытую туманную область, где Мысль сочетается с Фактом, где мы видим умственную работу математика и физическое действие молекул в их истинном соотношении? Разве дорога к ним не проходит через самое логовище метафизиков, усеянное останками предыдущих исследователей и внушающее ужас каждому человеку науки?.. В нашей повседневной работе мы приходим к вопросам того же рода, что и метафизики, но, не полагаясь на врожденную проницательность нашего ума, мы подходим к ним подготовленные длительным приспособлением нашего образа мыслей к фактам внешней природы». (Джемс Клерк Максвелл. Статьи и речи. М., «Наука», 1968. С.5).

Биография

Родился в семье шотландского дворянина из знатного рода Клерков. Учился сначала в Эдинбургском (1847-1850), затем в Кембриджском (1850-1854) университетах. В 1855 году стал членом совета Тринити-колледжа, в 1856-1860 гг. был профессором Маришал-колледжа Абердинского университета, с 1860 года возглавлял кафедру физики и астрономии в Кингз-колледже Лондонского университета. В 1865 году в связи с серьезной болезнью Максвелл отказался от кафедры и поселился в своем родовом поместье Гленлэр близ Эдинбурга. Продолжал заниматься наукой, написал несколько сочинений по физике и математике. В 1871 году в Кембриджском университете занял кафедру экспериментальной физики. Организовал научно-исследовательскую лабораторию, которая открылась 16 июня 1874 года и была названа Кавендишской - в честь Г. Кавендиша.

Свою первую научную работу Максвелл выполнил еще в школе, придумав простой способ вычерчивания овальных фигур. Эта работа была доложена на заседании Королевского общества и даже опубликована в его «Трудах». В бытность членом совета Тринити-колледжа занимался экспериментами по теории цветов, выступая как продолжатель теории Юнга и теории трех основных цветов Гельмгольца. В экспериментах по смешиванию цветов Максвелл применил особый волчок, диск которого был разделен на секторы, окрашенные в разные цвета (диск Максвелла). При быстром вращении волчка цвета сливались: если диск был закрашен так, как расположены цвета спектра, он казался белым; если одну его половину закрашивали красным, а другую - желтым, он казался оранжевым; смешивание синего и желтого создавало впечатление зеленого. В 1860 году за работы по восприятию цвета и оптике Максвелл был награжден медалью Румфорда.

В 1857 году Кембриджский университет объявил конкурс на лучшую работу об устойчивости колец Сатурна. Эти образования были открыты Галилеем в начале XVII в. и представляли удивительную загадку природы: планета казалась окруженной тремя сплошными концентрическими кольцами, состоящими из вещества неизвестной природы. Лаплас доказал, что они не могут быть твердыми. Проведя математический анализ, Максвелл убедился, что они не могут быть и жидкими, и пришел к заключению, что подобная структура может быть устойчивой только в том случае, если состоит из роя не связанных между собой метеоритов. Устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. За эту работу Максвелл получил премию Дж. Адамса.

Одной из первых работ Максвелла стала его кинетическая теория газов. В 1859 году ученый выступил на заседании Британской ассоциации с докладом, в котором привел распределение молекул по скоростям (максвелловское распределение). Максвелл развил представления своего предшественника в разработке кинетической теории газов Р. Клаузиуса, который ввел понятие «средней длины свободного пробега». Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве. Шарики (молекулы) можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остается постоянным, хотя они могут выходить из групп и входить в них. Из такого рассмотрения следовало, что «частицы распределяются по скоростям по такому же закону, по какому распределяются ошибки наблюдений в теории метода наименьших квадратов, т. е. в соответствии со статистикой Гаусса». В рамках своей теории Максвелл объяснил закон Авогадро, диффузию, теплопроводность, внутреннее трение (теория переноса). В 1867 году показал статистическую природу второго начала термодинамики («демон Максвелла»).

В 1831 году, в год рождения Максвелла, М. Фарадей проводил классические эксперименты, которые привели его к открытию электромагнитной индукции. Максвелл приступил к исследованию электричества и магнетизма примерно 20 лет спустя, когда существовали два взгляда на природу электрических и магнитных эффектов. Такие ученые, как А. М. Ампер и Ф. Нейман, придерживались концепции дальнодействия, рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами. Фарадей был приверженцем идеи силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Силовые линии заполняют все окружающее пространство (поле, по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия. Следуя Фарадею, Максвелл разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе «Фарадеевы силовые линии» (Faraday’s Lines of Force, 1857). В 1860-1865 гг. Максвелл создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений (уравнения Максвелла), описывающих основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е - магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е - закон сохранения количества электричества; 4-е - вихревой характер магнитного поля.

Продолжая развивать эти идеи, Максвелл пришел к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, т. е. должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3Ч1010 см/с, что близко к скорости света, измеренной семью годами ранее французским физиком А. Физо. В октябре 1861 года Максвелл сообщил Фарадею о своем открытии: свет - это электромагнитное возмущение, распространяющееся в непроводящей среде, т. е. разновидность электромагнитных волн. Этот завершающий этап исследований изложен в работе Максвелла «Динамическая теория электромагнитного поля» (Treatise on Electricity and Magnetism, 1864), а итог его работ по электродинамике подвел знаменитый «Трактат об электричестве и магнетизме». (1873)

Последние годы жизни Максвелл занимался подготовкой к печати и изданием рукописного наследия Кавендиша. Два больших тома вышли в октябре 1879 года.

Открытия Дж. К. Максвелла

Эдинбург. 1831-1850

Детство и школьные годы

13 июня 1831 года в Эдинбурге в доме номер 14 по улице Индии Франсез Кей, дочь эдинбургского судьи, после замужества – миссис Клерк Максвелл, родила сына Джеймса. В этот день во всем мире не произошло ничего сколько-нибудь значительного, еще не свершилось главное событие 1831 года. Но уже одиннадцать лет гениальный Фарадей пытается постичь тайны электромагнетизма, и лишь сейчас, летом 1831 года, он напал на след ускользающей электромагнитной индукции, и Джеймсу будет всего лишь четыре месяца, когда Фарадей подведет итог своему эксперименту «по получению электричества из магнетизма». И тем самым откроет новую эпоху – эпоху электричества. Эпоху, для которой предстоит жить и творить маленькому Джеймсу, потомку славных родов шотландских Клерков и Максвеллов.

Отец Джеймса, Джон Клерк Максвелл, адвокат по профессии, ненавидел юриспруденцию и питал неприязнь, как сам он говорил, к «грязным адвокатским делишкам». Как только случалась возможность, Джон прекращал бесконечное шарканье по мраморным вестибюлям Эдинбургского суда и посвящал себя научным экспериментам, которыми он между делом, по-любительски занимался. Он был дилетантом, сознавал это и тяжело переживал. Джон был влюблен в науку, в ученых, в людей практической сметки, в своего ученого деда Джорджа. Именно попытки сконструировать воздуходувные мехи, которые проводились совместно с братом Франсез Кей, свели его с будущей женой; свадьба состоялась 4 октября 1826 года. Воздуходувные мехи так никогда и не заработали, зато на свет появился сын Джеймс.

Когда Джеймсу было восемь, скончалась его мать, и он остался жить с отцом. Его детство заполнено природой, общением с отцом, книгами, рассказами о родных, «научными игрушками», первыми «открытиями». Родных Джеймса беспокоило то, что он не получает систематического образования: случайное чтение всего того, что есть в доме, уроки астрономии на крыльце дома и в гостиной, где Джеймс вместе с отцом построил «небесный глобус». После неудачной попытки обучения у частного преподавателя, от которого Джеймс часто сбегал к более увлекательным занятиям, было решено отправить его учиться в Эдинбург.

Несмотря на домашнее образование, Джеймс удовлетворял высоким требованиям Эдинбургской академии и был зачислен туда в ноябре 1841 года. Его успехи в классе были далеко не блестящи. Он легко мог бы выполнять задания лучше, но дух соревнования в малоприятных занятиях был для него глубоко чуждым. После первого же школьного дня он не сошелся с одноклассниками, и поэтому больше всего на свете Джеймс любил бывать один и рассматривать окружающие предметы. Одним из самых ярких событий, несомненно, скрасившее унылые школьные дни, было посещение вместе с отцом Эдинбургского королевского общества, где были выставлены первые «электромагнетические машины».

Эдинбургское королевское общество изменило жизнь Джеймса: именно там он получил первые понятия о пирамиде, кубе, других правильных многогранниках. Совершенство симметрии, закономерные превращения геометрических тел изменили понятие Джеймса об учении – он увидел в учении зерно красоты и совершенства. Когда пришло время экзаменов, ученики академии поразились – «дуралей», как они называли Максвелла, стал одним из первых.

Первое открытие

Если раньше отец изредка брал Джеймса на свое любимое развлечение – заседания Эдинбургского королевского общества, то теперь посещения этого общества, а также Эдинбургского общества искусств вместе с Джеймсом стали для него регулярными и обязательными. В заседаниях Общества искусств самым известным, собирающим толпы людей лектором был мистер Д.Р. Хей, художник-декоратор. Именно его лекции натолкнули Джеймса на его первое серьезное открытие – простой инструмент для рисования овалов. Джеймс нашел оригинальный и в тоже время очень простой способ, а главное, абсолютно новый. Принцип своего метода он описал в коротенькой «статье», которая была прочитана в Эдинбургском королевском обществе – честь, которой добивались многие, а удостоился четырнадцатилетний школьник.

Эдинбургский университет

Оптико-механические исследования

В 1847 году обучение в Эдинбургской академии заканчивается, Джеймс – один из первых, забыты обиды и треволнения первых лет.

После окончания академии Джеймс поступает в Эдинбургский университет. В это же время он всерьез начинает интересоваться оптическими исследованиями. Утверждения Брюстера натолкнули Джеймса на мысль, что изучение пути лучей можно использовать для определения упругости среды в разных направлениях, для обнаружения напряжений в прозрачных материалах. Таким образом, исследование механических напряжений можно свести к оптическому исследованию. Два луча, разделившиеся в напряженном прозрачном материале, будут взаимодействовать, рождая характерные красочные картины. Джеймс показал, что цветные картины носят вполне закономерный характер и могут быть использованы для расчетов, для проверки выведенных ранее формул, для выведения новых. Оказалось, что некоторые формулы неверны, или неточны, или нуждаются в поправках.

Рис.1 картина напряжений в стелянном треугольнике, полученная Джеймсом при помощи поляризованного света.

Более того, Джеймсу удалось вскрыть закономерности в тех случаях, где раньше не удавалось ничего сделать из-за математических трудностей. Прозрачный и нагруженный треугольник из неотпущенного стекла (рис.1) дал Джеймсу возможность исследовать напряжения и в этом, наподдававшемся расчету случае.

Девятнадцатилетний Джеймс Клерк Максвелл впервые поднялся на трибуну Эдинбургского королевского общества. Его доклад не мог остаться незамеченным: слишком много нового и оригинального содержал он.

1850-1856 Кембридж

Занятия электричеством

Теперь уже никто не ставил под сомнение одаренность Джеймса. Он явно перерос уже Эдинбургский университет и поэтому осенью 1850 года поступил в Кембридж. В январе 1854 года Джеймс заканчивает с отличием университет со степенью бакалавра. Он решает остаться в Кембридже для подготовки к профессорскому званию. Теперь, когда не нужно готовиться к экзаменам, он получает долгожданную возможность тратить все свое время на эксперименты, продолжает свои исследования в области оптики. Особенно его интересует вопрос об основных цветах. Первая статья Максвелла называлась «Теория цветов в связи с цветовой слепотой» и была даже собственно не статьей, а письмом. Максвелл отправил его доктору Вильсону, а тот счел письмо настолько интересным, что позаботился об его публикации: поместил его целиком в свою книгу, посвященную цветовой слепоте. И все же Джеймса безотчетно влекут к себе тайны более глубокие, вещи куда более неочевидные, чем смешение цветов. Именно электричество в силу его интригующей непонятности, неизбежно, рано или поздно, должно было привлечь энергию его молодого ума. Джеймс довольно легко воспринял фундаментальные принципы напряженного электричества. Изучив теорию дальнодействия Ампера, он, несмотря на ее видимую неопровержимость, позволил себе в ней усомниться. Теория дальнодействия казалась несомненно справедливой, т.к. подтверждалась формальным сходством законов, математических выражений для, казалось бы, разных явлений – гравитационного и электрического взаимодействия. Но эта теория, более математическая, нежели физическая, не убедила Джеймса, он все больше склонялся к фарадеевскому восприятию действием через посредство магнитных силовых линий, заполняющих пространство, к теории близкодействия.

Пытаясь создать теорию, Максвелл решил использовать для исследования метод физических аналогий. Прежде всего, нужно было найти правильную аналогию. Максвелл всегда восхищался тогда еще только замеченной аналогией существующей между вопросами притяжения электрически заряженных тел и вопросами установившейся теплопередачи. Это, а также фарадеевские идеи близкодействия, амперовское магнитное действие замкнутых проводников, Джеймс постепенно выстраивал в новую теорию, неожиданную и смелую.

В Кембридже Джеймса назначают читать труднейшие главы курсов гидростатики и оптики наиболее способным студентам. Кроме того, от электрических теорий его отвлекает работа над книгой по оптике. Максвелл скоро приходит к выводу, что оптика больше не интересует его, как раньше, а лишь отвлекает от изучения электромагнитных явлений.

Продолжая искать аналогию, Джеймс сравнивает силовые линии с течением какой-то несжимаемой жидкости. Теория трубок из гидродинамики позволила заменить силовые линии силовыми трубками, которые легко объясняли опыт Фарадея. В рамки теории Максвелла легко и просто укладывались понятия о сопротивлении, явления электростатики, магнитостатики и электрического тока. Но в эту теорию пока никак не укладывалось открытое Фарадеем явление электромагнитной индукции.

Джеймсу пришлось на некоторое время забросить свою теорию в связи с ухудшением состояния отца, требовавшего ухода. Когда же после смерти отца Джеймс вернулся в Кембридж, он из-за вероисповедания не смог получить более высокую степень магистра. Поэтому в октябре 1856 года Джеймс Максвелл заступает на кафедру в Абердине.

Абердин 1856-1860

Трактат о кольцах Сатурна

Именно в Абердине была написана первая работа по электричеству – статья «О фарадеевских линиях силы», которая привела к обмену мнениями об электромагнитных явлениях с самим Фарадеем.

Когда Джеймс приступил к занятиям в Абердине, у него в голове уже созрела новая задача, которую пока никто не мог решить, новое явление, которое подлежало объяснению. Это были Сатурновы кольца. Определить их физическую природу, определить за миллионы километров, без каких бы то ни было приборов, пользуясь только бумагой и пером, – это была задача как будто для него. Гипотеза твердого жесткого кольца отпала сразу. Жидкое кольцо распалось бы под влиянием возникших в нем гигантских волн – и в результате, по мысли Джеймса Клерка Максвелла, вокруг Сатурна, скорее всего, витает сонм мелких спутников – «кирпичных обломков», по его восприятию. За трактат, посвященный кольцам Сатурна, в 1857 году Джеймсу была присуждена премия Адамса, а сам он признан одним из самых авторитетных английских физиков-теоретиков.

Рис.2 Сатурн. Фотография, сделанная с помощью 36-дюймового рефрактора в Ликской обсерватории.

Рис.3 Механические модели, иллюстрирующие движение колец Сатурна. Рисунки из эссе Максвелла «О стабильности вращения колец Сатурна»

Лондон – Гленлейр 1860-1871

Первая цветная фотография

В 1860 году начинается новый этап в жизни Максвелла. Он назначен на должность профессора кафедры натуральной философии в Кингс-колледж в Лондоне. Кингс-колледж по оснащенности своих физических лабораторий был впереди многих университетов мира. Здесь Максвелл не просто в 1864-1865 гг. читал курс прикладной физики, здесь он пытался организовать учебный процесс по-новому. Студенты учились в процессе экспериментов. В Лондоне Джеймс Клерк Максвелл впервые вкусил плоды своего признания в качестве крупного ученого. За исследования по смешению цветов и оптике Королевское общество наградило Максвелла медалью Румфорда. 17 мая 1861 года Максвеллу была предложена высокая честь – прочесть лекцию перед Королевским институтом. Тема лекции – «О теории трех основных цветов». На этой лекции, в качестве доказательства этой теории, миру впервые была продемонстрирована цветная фотография!

Теория вероятностей

В конце абердинского периода и в начале лондонского у Максвелла появилось наряду с оптикой и электричеством новое увлечение – теория газов. Работая над этой теорией, Максвелл вводит в физику такие понятия как «вероятно», «это событие может произойти с большей степенью вероятности».

В физике произошла революция, а многие слушатели докладов Максвелла на ежегодных встречах Британской ассоциации этого даже не заметили. С другой стороны, Максвелл подошел к границам механического понимания материи. И переступил их. Вывод Максвелла о господстве в мире молекул законов теории вероятностей затрагивал самые фундаментальные основы мировоззрения. Заявление о том, что в мире молекул «господствует случай», было по своей смелости одним из величайших подвигов в науке.

Механическая модель Максвелла

Работа в Кингс-колледже требовала уже куда больше времени, чем в Абердине, – лекционный курс продолжался девять месяцев в году. Тем не менее, в это время тридцатилетний Джеймс Клерк Максвелл набрасывает план своей будущей книги по электричеству. Это зародыш будущего «Трактата». Первые главы его он посвящает своим предшественникам: Эрстеду, Амперу, Фарадею. Пытаясь объяснить Фарадеевскую теорию силовых линий, индукцию электрических токов и Эрстедовскую теорию вихреобразности характера магнитных явлений, Максвелл создает свою механическую модель (рис.5).

Модель представляла собой ряды молекулярных вихрей, вращающихся в одном направлении, между которыми помещен слой мельчайших шарообразных частичек, способных к вращению. Несмотря на свою громоздкость, модель объясняла многие электромагнитные явления, в том числе электромагнитную индукцию. Сенсационность модели была в том, что она объясняла теорию о действии магнитного поля под прямым углом по отношению к направлению тока, сформулированную Максвеллом («правило буравчика»).

Рис.4 Максвелл устраняет взаимодействие вращающихся в одну сторону соседних вихрей А и В, вводя между ними «холостые шестеренки»

Рис.5 Механическая модель Максвелла для объяснения электромагнитных явлений.

Электромагнитные волны и электромагнитная теория света

Продолжая опыты с электромагнитами, Максвелл приблизился к теории о том, что любые изменения электрической и магнитной силы посылают волны, распространяющиеся в пространстве.

После серии статей «О физических линиях» у Максвелла был уже, по сути дела, весь материал для построения новой теории электромагнетизма. Теперь уже для теории электромагнитного поля. Начисто исчезли шестеренки, вихри. Уравнения поля были для Максвелла ничуть не менее реальны и ощутимы, чем результаты лабораторных опытов. Теперь и электромагнитная индукция Фарадея, и ток смещения Максвелла выводились не с помощью механических моделей, а с помощью математических операций.

По Фарадею изменение магнитного поля приводит к появлению электрического поля. Всплеск магнитного поля вызывает всплеск электрического поля.

Всплеск электрической волны рождает всплеск волны магнитной. Так впервые из-под пера тридцатитрехлетнего пророка появились в 1864 году электромагнитные волны, но еще не в том виде, в котором мы их понимаем сейчас. Максвелл говорил в статье 1864 года только о магнитных волнах. Электромагнитная волна в полном смысле этого слова, включающая одновременно электрическое и магнитное возмущения, появилась у Максвелла позже, в его статье в 1868 году.

В другой статье Максвелла - «Динамической теории электромагнитного поля» – приобрела четкие очертания и доказательность намеченная еще раньше электромагнитная теория света. На основе собственных исследований и опыта других ученых (и в наибольшей степени Фарадея) Максвелл делает вывод, что оптические свойства среды связаны с ее электромагнитными свойствами, и свет представляет собой не что иное, как электромагнитные волны.

В 1865 году Максвелл решает оставить Кингс-колледж. Он поселяется в своем родовом поместье Гленмейр, где занимается основными трудами жизни – «Теорией теплоты» и «Трактатом об электричестве и магнетизме». Им посвящается все время. Это были годы отшельничества, годы полной отрешенности от суеты, служения одной только науке, годы наиболее плодотворные, светлые, творческие. Тем не менее, Максвелла вновь тянет работать при университете, и он принимает предложение, сделанное ему Кембриджским университетом.

Кембридж 1871-1879

Кавендишская лаборатория

В 1870 году герцог Девонширский заявил сенату университета о своем желании построить и оснастить физическую лабораторию. И возглавить ее должен был ученый с мировым именем. Этим ученым стал Джеймс Клерк Максвелл. В 1871 году он начинает работу по оснащению знаменитой Кавендишской лаборатории. В эти годы наконец издается его «Трактат об электричестве и магнетизме». Более тысячи страниц, где Максвелл дает описание научных опытов, обзор всех, до тех пор созданных теорий электричества и магнетизма, а также «Основные уравнения электромагнитного поля». В целом в Англии не приняли основных идей «Трактата», даже друзья не поняли его. Идеи Максвелла подхватили молодые. Большое впечатление теория Максвелла произвела на русских ученых. Всем известна роль Умова, Столетова, Лебедева в развитии и укреплении Максвелловой теории.

16 июня 1874 года – день торжественного открытия Кавендишской лаборатории. Последующие годы ознаменовались се растущим признанием.

Мировое признание

В 1870 году Максвелл избран почетным доктором литературы Эдинбургского университета, в 1874 году – иностранным почетным членом Американской академии искусств и наук в Бостоне, в 1875 году – членом Американского философского общества в Филадельфии, а также становится почетным членом академий Нью-Йорка, Амстердама, Вены. Последующие пять лет Максвелл занимается редактированием и подготовкой к изданию двадцати пакетов манускриптов Генри Кавендиша.

В 1877 году Максвелл почувствовал первые признаки болезни, а в мае 1879 года прочел своим студентам последнюю лекцию.

Размерность

В своем знаменитом трактате об электричестве и магнетизме (см. Москва, «Наука», 1989) Максвелл обратился к проблеме размерности физических величин и заложил основы их кинетической системы. Особенность этой системы - наличие в ней только двух параметров: длины L и времени Т. Все известные (и неизве­стные на сегодня!) величины представляются в ней как целочисленные степени L и Т. Появляющиеся в формулах размерностей других систем дробные показатели, лишенные физического содержания и логического смысла, в данной системе отсутствуют.

В соответствии с требованиями Дж. Максвелла, А. Пуанкаре, Н. Бора, А. Эйнштейна, В. И. Вернадского, Р. Бартини физическая величина является универсальной тогда и только тогда, когда ясна ее связь с пространством и вре менем . И, тем не менее, до трактата Дж. Максвелла «Об электричестве и магнетизме» (1873) не была установлена связь размерности массы с длиной и временем.

Поскольку размерность для массы введена Максвеллом (вместе с обозначением в виде квадратных скобок), то позволим себе привести отрывок из работы самого Максвелла: «Любое выражение для какой-нибудь величины состоит из двух факторов или компонент. Одним из таковых является наименование некоторой известной величины того же типа, что и величина, которую мы выражаем. Она берется в качестве эталона отсчета . Другим компонентом служит число, показывающее, сколько раз надо приложить эталон для получения требуемой величины. Эталонная стандартная величина называется единицей , а соответствующее число - числовым значением данной величины».

«ОБ ИЗМЕРЕНИИ ВЕЛИЧИН»

1. Любое выражение для какой-нибудь величины состоит из двух факторов или компонент. Одним из таковых является наименование некоторой известной величины того же типа, что и величина, которую мы выражаем. Она берется в качестве эталона отсчета . Другим компонентом служит число, показывающее, сколько раз надо приложить эталон для получения требуемой величины. Эталонная стандартная величина называется в технике Единицей , а соответствующее число - Числовым Значением данной величины.

2. При построении математической системы мы считаем основные единицы - длины, времени и массы - заданными, а все производные единицы выводим из них с помощью простейших приемлемых определений.

Следовательно, во всех научных исследованиях очень важно использовать единицы, принадлежащие системе, должным образом определенной, равно как и знать их связи с основными единицами, чтобы иметь возможность сразу же пересчитывать результаты одной системы в другую.

Знание размерности единиц снабжает нас способом проверки, который следует применять к уравнениям, полученным в результате длительных исследований.

Размерность каждого из членов уравнения относительно каждой из трех основных единиц должна быть одной и той же. Если это не так, то уравнение бессмысленно, оно содержит какую-то ошибку, поскольку его интерпретация оказывается разной и зависящей от той произвольной системы единиц, которую мы принимаем.

Три основные единицы:

(1) ДЛИНА. Эталоном длины, используемым в нашей стране в научных целях, служит фут, который составляет третью часть стандартного ярда, хранящегося в Казначейской Палате.

Во Франции и других странах, принявших метрическую систему, эталоном длины является метр. Теоретически это одна десятимиллионная часть длины земного меридиана, измеренного от полюса до экватора; практически же это длина хранящегося в Париже эталона, изготовленного Борда (Borda) с таким расчетом, чтобы при температуре таянья льда он соответствовал значению длины меридиана, полученному Даламбером. Измерения, отражающие новые и более точные измерения Земли, не вносятся в метр, наоборот, - сама дуга меридиана исчисляется в первоначальных метрах.

В астрономии за единицу длины принимается иногда среднее расстояние от Земли до Солнца.

При современном состоянии науки наиболее универсальным эталоном длины из числа тех, которые можно было бы предложить, служила бы длина волны света определенного вида, испускаемого каким-либо широко распространенным веществом (например, натрием), имеющим в своем спектре четко отождествляемые линии. Такой эталон не зависел бы от каких-либо изменений в размерах Земли, и его следовало бы принять тем, кто надеется, что их писания окажутся более долговечными, чем это небесное тело.

При работе с размерностями единиц мы будем обозначать единицу длины как [L ]. Если численное значение длины равно l, то это понимается как значение, выраженное через определенную единицу [L ], так что вся истинная длина представляется как l [L ].

(2) ВРЕМЯ. Во всех цивилизованных странах стандартная единица времени выводится из периода обращения Земли вокруг своей оси. Звездные сутки или истинный период обращения Земли может быть установлен с большой точностью при обычных астрономических наблюдениях, а средние солнечные сутки могут быть вычислены из звездных суток благодаря нашему знанию продолжительности года.

Секунда среднего солнечного времени принята в качестве единицы времени во всех физических исследованиях.

В астрономии за единицу времени иногда берется год. Более универсальную единицу времени можно было бы установить, взяв период колебаний того самого света, длина волны которого равна единице длины.

Мы будем именовать конкретную единицу времени как [T ], а числовую меру времени обозначать через t .

(3) МАССА. В нашей стране стандартной единицей массы является эталонный коммерческий фунт (avoirdupois pound), хранящийся в Казначейской Палате. Часто используемый в качестве единицы гран (grain) составляет одну 7000-ю долю этого фунта.

В метрической системе единицей массы служит грамм; теоретически это масса кубического сантиметра дистиллированной воды при стандартных значениях температуры и давления, а практически это одна тысячная часть эталонного килограмма, хранящегося в Париже*.

Но если, как это делается во французской системе, определенное вещество, а именно вода, берется в качестве эталона плотности, то единица массы уже перестает быть независимой, а изменяется подобно единице объема, т.е. как [L 3 ]. Если же, как в астрономической системе, единица массы выражена через силу ее притяжения, то размерность [M ] оказывается такой [L 3 T 2 ]».

Максвелл показывает, что массу можно исключить из числа основных размерных величин . Это достигается с помощью двух определений понятия «сила»:

1) и 2) .

Приравнивая эти два выражения и считая гравитационную постоянную безразмерной величиной, Максвелл получает:

, [M ] = [L 3 T 2 ].

Масса оказалась пространственно-временной величиной. Ее размерность: объем с угловым ускорением (или плотностью, имеющей ту же размерность ).

Величина массы стала удовлетворять требованию универсальности . Появилась возможность выразить все другие физические величины в пространственно-временных единицах измерения.

В 1965 году в журнале «Доклады АН СССР» (№ 4) была опубликована статья Р. Бартини «Кинематическая система физических величин». Эти результаты имеют исключительное значение для обсуждаемой проблемы.

Закон сохранения мощности

Лагранж, 1789; Максвелл, 1855.

В общем виде закон сохранения мощности записывается как инвариантность величины мощности:

Из уравнения полной мощности N = P + G следует, что полезная мощность и мощность потерь проективно инверсны, и поэтому любое изменение свободной энергии компенсируются изменением мощности потерь под контролем полной мощности .

Полученный вывод дает основание представить закон сохранения мощности в виде скалярного уравнения:

Где .

Изменение активного потока компенсируется разностью между потерями и поступлениями в систему.

Таким образом, механизм открытой системы снимает ограничения замкнутости, и тем самым предоставляет возможность дальнейшего движения системы. Однако этот механизм не показывает возможных направлений движения - эволюции систем. Поэтому он должен быть дополнен механизмами эволюционирующих и неэволюционирующих систем или неравновесных и равновесных.

Список используемой литературы


  1. Вл. Карцев «Жизнь замечательных людей. Максвелл». - М., «Молодая гвардия», 1974.

  2. Джемс Клерк Максвелл. Статьи и речи. М., «Наука», 1968.

  3. http://physicsbooks.narod.ru/

  4. http://revolution.allbest.ru/

  5. http://ru.wikipedia.org/wiki/

  6. http://www.situation.ru/

  7. http://www.uni-dubna.ru/

  8. http://www.uran.ru/
Похожие публикации