Что значит относительная атомная масса. Атомная масса

>> Масса атома. Относительная атомная масса

Масса атома. Относительная атомная масса

Материал параграфа поможет вам выяснить:

> в чем различие между массой атома и относительной атомной массой ;
> почему удобно пользоваться относительными атомными массами;
> где найти значение относительной атомной массы элемента.

Это интересно

Масса электрона составляет приблизительно 9 10 -28 г.

Масса атома.

Важной характеристикой атома является его масса. Почти вся масса атома сконцентрирована в ядре. Электроны имеют настолько малую массу, что ею обычно пренебрегают.

сравнивают с 1/12 - массы атома Карбона (он почти в 12 раз тяжелее атома Гидрогена). Эту маленькую массу назвали атомной единицей массы (сокращенно - а. е. м.):

1 а. е. м. = 1/12m a (С) = 1/12 1,994 10 -23 г = 1,662 10 -24 г.

Масса атома Гидрогена почти совпадает с атомной единицей массы: m а (Н)~ 1а. е. м. Масса атома Урана больше ее в

То есть
m a (U) ~ 238 а. е. м.

Число, которое получают делением массы атома элемента на атомную единицу массы, называют относительной атомной массой элемента. Эту величину обозначают A r (E):

Индекс возле буквы А - первая буква в латинском слове relativus - относительный.

Относительная атомная масса элемента показывает, во сколько раз масса атома элемента больше 1/12 массы атома Карбона.

m а (Н) = 1,673 10 -2 4 г

m a (H)= 1 а. е. м.

A r (H) = 1

Относительная атомная масса элемента не имеет размерности.

Первую таблицу относительных атомных масс составил почти 200 лет назад английский ученый Дж. Дальтон.

На основании изложенного материала можно сделать такие выводы:

Относительные атомные массы пропорциональны массам атомов;
соотношения масс атомов такие же, как и относительных атомных масс.

Значения относительных атомных масс химических элементов записаны в периодической системе .

Джон Дальтон (1766- 1844)

Выдающийся английский физик и химик. Член Лондонского королевского общества (Английской академии наук). Первым выдвинул гипотезу о разных массах и размерах атомов, определил относительные атомные массы многих элементов и составил первую таблицу их значений (1803). Предложил символы элементов и обозначения химических соединений.

Сделав свыше 200 000 метеорологических наблюдений, изучив состав и свойства воздуха, открыл законы парциальных (частичных) давлений газов (1801), теплового расширения газов (1802), растворимости газов в жидкостях (1803).


Рис. 35. Клетка элемента Урана

Они определены с очень высокой точностью; соответствующие числа являются в основном пяти- и шестизначными (рис. 35).

В обычных химических расчетах значения относительных атомных масс принято округлять до целых чисел. Так, для Гидрогена и Урана

A r (H) = 1,0079 ~ 1;
A r (U) = 238,029 ~ 238.

Лишь значение относительной атомной массы Хлора округляют до десятых:

A r (Cl) = 35,453 ~ 35,5.

Найдите в периодической системе значения относительных атомных масс Лития, Карбона, Оксигена, Неона и округлите их до целых чисел.

Во сколько раз массы атомов Карбона, Оксигена, Неона и Магния больше массы атома Гелия? Для вычислений используйте округленные значения относительных атомных масс.

Обратите внимание : элементы размещены в пeриодической системе в порядке возрастания атомных масс.

Выводы

Атомы имеют чрезвычайно малую массу.

Для удобства вычислений используют относительные массы атомов.

Относительная атомная масса элемента является отношением массы атома элемента к - массы атома Карбона.

Значения относительных атомных масс указаны в периодической системе химических элементов.

?
48. В чем различие между понятиями «масса атома» и относительная атомная масса»?
49. Что такое атомная единица массы?
50. Что означают записи A r и A r ?
51. Какой атом легче - Карбона или Титана? Во сколько раз?
52. Что имеет большую массу: атом Флуора или два атома Лития; два ато­ма Магния или три атома Сульфура?
53. Найдите в периодической системе три-четыре пары элементов, соот­ношение масс атомов которых составляет: а) 1: 2; б) 1: 3.
54. Вычислите относительную атомную массу Гелия, если масса атома этого элемента равна 6,647 - 10 -24 г.
55. Рассчитайте массу атома Бериллия.

Попель П. П., Крикля Л. С., Хімія: Підруч. для 7 кл. загальноосвіт. навч. закл. - К.: ВЦ «Академія», 2008. - 136 с.: іл.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Атомы имеют очень маленький размер и очень маленькую массу. Если выражать массу атома какого-нибудь химического элемента в граммах, то это будет число перед которым находится более двадцати нулей после запятой. Поэтому измерять массу атомов в граммах неудобно.

Однако, если принять какую-либо очень малую массу за единицу, то все остальные малые массы можно выражать как отношение к этой единицы. В качестве единицы измерения массы атома была выбрана 1/12 часть массы атома углерода.

1/12 часть массы атома углерода называют атомной единицей массы (а. е. м.).

Относительной атомной массой является величина, равная отношению реальной массы атома конкретного химического элемента к 1/12 реальной массы атома углерода. Это безразмерная величина, так как делятся две массы.

A r = m ат. / (1/12)m угл.

Однако абсолютная атомная масса равна относительной по значению и имеет единицу измерения а.е.м.

То есть относительная атомная масса показывает, во сколько раз масса конкретного атома больше 1/12 атома углерода. Если у атома A r = 12, значит его масса в 12 раз больше 1/12 массы атома углерода, или, другими словами, в нем 12 атомных единиц массы. Такое может быть только у самого углерода (C). У атома водорода (H) A r = 1. Это значит, что его масса равна массе 1/12 части от массы атома углерода. У кислорода (O) относительная атомная масса равна 16 а.е.м. Это значит, что атом кислорода в 16 раз массивнее 1/12 атома углерода, в нем 16 атомных единиц массы.

Самый легкий элемент - это водород. Его масса примерно равна 1 а.е.м. У самых тяжелых атомов масса приближается к 300 а.е.м.

Обычно для каждого химического элемента его значение абсолютной массы атомов, выраженных через а. е. м. округляют.

Значение атомных единиц массы записаны в таблице Менделеева.

Для молекул используется понятие относительной молекулярной массы (M r) . Относительная молекулярная масса показывает, во сколько раз масса молекулы больше 1/12 массы атома углерода. Но поскольку масса молекулы равна сумме масс составляющих ее атомов, то относительную молекулярную массу можно найти, просто сложив относительные массы этих атомом. Например, в молекулу воды (H 2 O) входят два атома водорода с A r = 1 и один атом кислорода с A r = 16. Следовательно, Mr(Н 2 O) = 18.

Ряд веществ имеет немолекулярное строение, например металлы. В таком случае их относительную молекулярную массу считают равной их относительной атомной массе.

В химии важным является величина, которая называется массовая доля химического элемента в молекуле или веществе. Она показывает, какая часть относительной молекулярной массы приходится на данный элемент. Например, в воде на водород приходится 2 доли (так как два атома), а на кислород 16. То есть, если смешать водород массой 1 кг и кислород массой 8 кг, то они прореагируют без остатка. Массовая доля водорода равна 2/18 = 1/9, а массовая доля кислорода 16/18 = 8/9.

ОПРЕДЕЛЕНИЕ

Железо - двадцать шестой элемент Периодической таблицы. Обозначение - Fe от латинского «ferrum». Расположен в четвертом периоде, VIIIB группе. Относится к металлам. Заряд ядра равен 26.

Железо - самый распространенный после алюминия металл на земном шаре: оно составляет 4% (масс.) земной коры. Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном состоянии железо находят только в метеоритах.

К важнейшим рудам железа относятся магнитный железняк Fe 3 O 4 , красный железняк Fe 2 O 3 , бурый железняк 2Fe 2 O 3 ×3H 2 O и шпатовый железняк FeCO 3 .

Железо - серебристый (рис. 1) пластичный металл. Оно хорошо поддается ковке, прокатке и другим видам механической обработки. Механические свойства железа сильно зависят от его чистоты - от содержания в нем даже весьма малых количеств других элементов.

Рис. 1. Железо. Внешний вид.

Атомная и молекулярная масса железа

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) - во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии железо существует в виде одноатомных молекул Fe значения его атомной и молекулярной масс совпадают. Они равны 55,847.

Аллотропия и аллотропные модификации железа

Железо образует две кристаллические модификации: α-железо и γ-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая - кубическую гранецентрированную. α-Железо термодинамически устойчиво в двух интервалах температур: ниже 912 o С и от 1394 o С до температуры плавления. Температура плавления железа равна 1539 ± 5 o С. Между 912 o С и от 1394 o С устойчиво γ-железо.

Температурные интервалы устойчивости α- и γ-железа обусловлены характером изменения энергии Гиббса обеих модификаций при изменении температуры. При температурах ниже 912 o С и выше 1394 o С энергия Гиббса α-железа меньше энергии Гиббса γ-железа, а в интервале 912 - 1394 o С - больше.

Изотопы железа

Известно, что в природе железо может находиться в виде четырех стабильных изотопов 54 Fe, 56 Fe, 57 Fe и 57 Fe. Их массовые числа равны 54, 56, 57 и 58 соответственно. Ядро атома изотопа железа 54 Fe содержит двадцать шесть протонов и двадцать восемь нейтронов, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы железа с массовыми числами от 45-ти до 72-х, а также 6 изомерных состояний ядер. Наиболее долгоживущим среди вышеперечисленных изотопов является 60 Fe с периодом полураспада равным 2,6 млн. лет.

Ионы железа

Электронная формула, демонстрирующая распределение по орбиталям электронов железа выглядит следующим образом:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 .

В результате химического взаимодействия железо отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Fe 0 -2e → Fe 2+ ;

Fe 0 -3e → Fe 3+ .

Молекула и атом железа

В свободном состоянии железо существует в виде одноатомных молекул Fe. Приведем некоторые свойства, характеризующие атом и молекулу железа:

Сплавы железа

До XIX века из сплавов железа были известны в основном его сплавы с углеродом, получившие названия стали и чугуна. Однако в дальнейшем были созданы новые сплавы на основе железа, содержащие хром, никель и другие элементы. В настоящее время сплавы железа подразделяют на углеродистые стали, чугуны, легированные стали и стали с особыми свойствами.

В технике сплавы железа принято называть черными металлами, а их производство - черной металлургией.

Примеры решения задач

Задание Элементарный состав вещества следующий: массовая доля элемента железа 0,7241 (или 72,41%), массовая доля кислорода 0,2759 (или 27,59%). Выведите химическую формулу.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим число атомов железа в молекуле через «х», число атомов кислорода через «у».

Найдем соответствующие относительные атомные массы элементов железа и кислорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Ar(Fe) = 56; Ar(O) = 16.

Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения:

x:y= ω(Fe)/Ar(Fe) : ω(O)/Ar(O);

x:y = 72,41/56: 27,59/16;

x:y = 1,29: 1,84.

Наименьшее число примем за единицу (т.е. все числа разделим на наименьшее число 1,29):

1,29/1,29: 1,84/1,29;

Следовательно, простейшая формула соединения железа с кислородом имеет вид Fe 2 O 3 .

Ответ Fe 2 O 3

Физические свойства железа зависят от супеню его чистоты. Чистое железо достаточно пластичным металлом серебристо-белого цвета. Плотность железа составляет 7,87 г/см 3 . Температура плавления составляет 1539 ° С. В отличие от многих других металлов, железо проявляет магнитные свойства.

Чистое железо на воздухе достаточно устойчивым. В практической деятельности железо применяется, содержащего примеси. При нагревании железо является достаточно активным в отношении многих неметаллов. Рассмотрим химические свойства железа на примере взаимодействия с типичными неметаллами: кислородом и серой.

При сгорании железа в кислороде образуется соединение железа с кислорода, которая получила название железная окалина. Реакция сопровождается выделением тепла и света. Составим уравнение химической реакции:

3Fe + 2O 2 = Fe 3 O 4

При нагревании железо бурно реагирует с серой с образованием феррум (II) сульфида. Реакция также сопровождается выделением тепла и света. Составим уравнение химической реакции:

Железо широко применяется в промышленности и быту. Железный век - эпоха в развитии человечества, которая началась в начале первого тысячелетия до нашей эры в связи с распространением выплавки железа и изготовление железного орудия труда и военного оружия. Железный век пришел на смену бронзовому возраста. Сталь впервые появилась в Индии в десятом веке до нашей эры, чугун - только в средние века. Чистое железо используется для изготовления сердечников трансформаторов и электромагнитов, а также в производстве специальных сплавов. Больше всего на практике используют сплавы железа: чугун и сталь. Чугун применяется в производстве литья и стали, сталь - как конструкционный и инструментальный материалы, которые проявляют устойчивость к коррозии.

Под влиянием кислорода воздуха и влаги железные сплавы превращаются в ржавчину. Продукт ржавления можно описать химической формулой Fe 2 O 3 · хH 2 O. Одна шестая часть выплавляемого чугуна, погибает от ржавления, поэтому вопрос борьбы с коррозией является весьма актуальным. Методы защиты от коррозии весьма разнообразны. Важнейшие из них: защита поверхности металла покрытием, создание сплавов с антикоррозийными свойствами, электрохимические средства, изменение состава среды. Защитные покрытия делят на две группы: металлические (покрытие железа цинком, хромом, никелем, кобальтом, медью) и неметаллические (лаки, краски, пластмассы, резина, цемент). При введении в состав сплавов специальных добавок получают нержавеющую сталь.

Железо. Распространенность железа в природе

Железо. Распространенность железа в природе. Биологическая роль железа

Второй важный химический элемент после кислорода, свойства которого будут изучаться, - это Ферум. Железо является металлическим элементом, который образует простое вещество - железо. Железо входит в состав восьмой группы побочной подгруппы периодической системы . Согласно номеру группы максимальная валентность железа должна составлять восемь, однако в соединениях Ферум чаще проявляет валентность два и три, а также известные соединения с валентностью железа шесть. Относительная атомная масса железа равно пятьдесят шесть.

По распространенной в составе земной коры Ферум занимает среди металлических элементов второе место после алюминия. Массовая доля железа в земной коре составляет почти пять процентов. В самородном состоянии железо встречается очень редко, обычно лишь в виде метеоритов. Именно в этом виде наши предки и смогли впервые познакомиться с железом и оценить его как очень хороший материал для изготовления орудий труда. Считается, что железо является главной составляющей ядра земного шара. Чаще Ферум встречается в природе в составе руд. Важнейшими из них являются: магнитный железняк (магнетит) Fe 3 O 4 , красный железняк (гематит) Fe 2 O 3 , бурый железняк (лимонит) Fe 2 O 3 · nH 2 O, железный колчедан (пирит) FeS 2 , шпатовый железняк (сидерит) FeСO3, гетит FeO (OH). В водах многих минеральных источников содержится Fe (НСO 3) 2 и некоторые другие соли железа.

Железо является жизненно важным элементом. В организме человека, как и животных, феррум присутствует во всех тканях, однако наибольшая его часть (примерно три грамма) сосредоточена в кровяных шариках. Атомы железа занимают центральное положение в молекулах гемоглобина, им гемоглобин обязан своей окраской и способностью присоединять отщеплять кислород. Железо участвует в процессе переноса кислорода от легких к тканям организма. Суточная потребность организма в Ферум составляет 15-20 мг. Общая его количество попадает в организм человека с растительной пищей и мясом. При потере крови потребность в Ферум превышает количество, которое человек получает с пищей. Недостаток железа в организме может привести к состоянию, которое характеризуется уменьшением количества эритроцитов и гемоглобина крови. Медицинские препараты железа следует принимать только по назначению врача.

Химические свойства кислорода. Реакции соединения

Химические свойства кислорода. Реакции соединения. Понятие оксиды, окисления и горения. Условия возникновения и прекращения горения

Кислород при нагревании энергично реагирует со многими веществами. Если в сосуд с кислородом внести раскаленный древесный уголь С, то оно раскаляется добела и сгорает. Составим уравнение химической реакции:

С + ONaHCO 2 = CONaHCO 2

Сера S горит в кислороде ярким синим пламенем с образованием газообразного вещества - сернистого газа. Составим уравнение химической реакции:

S + ONaHCO 2 = SONaHCO 2

Фосфор Р сгорает в кислороде ярким пламенем с образованием густого белого дыма, который состоит из твердых частиц фосфор (V) оксида. Составим уравнение химической реакции:

4P + 5ONaHCO 2 = 2PNaHCO 2 ONaHCO 5

Уравнения реакций взаимодействия кислорода с углем, серой и фосфором объединяет то, что из двух исходных веществ в каждом из случаев образуется одно вещество. Такие реакции, в результате которых из нескольких исходных веществ (реагентов) образуется только одно вещество (продукт), называются реакциями сообщения.

Продукты взаимодействия кислорода с рассмотренными веществами (углем, серой, фосфором) является оксидами. Оксидами называют сложные вещества, содержащие два элемента, один из которых кислород. Почти все химические элементы образуют оксиды, за исключением некоторых инертных элементов: гелия, неона, аргона, криптона и ксенона. Есть некоторые химические элементы, которые непосредственно не сочетаются с кислородом, например, Аурум.

Химические реакции взаимодействия веществ с кислородом называют реакциями окисления. Понятие "окисления" является более общим, чем понятие "горения". Горение - это химическая реакция, при которой происходит окисление веществ сопровождается выделением тепла и света. Для возникновения горения необходимы следующие условия: тесный контакт воздуха с горючим веществом и нагрев до температуры воспламенения. Для различных веществ температура воспламенения имеет разные значения. Например, температура воспламенения древесной пыли составляет 610 ° С, серы - 450 ° С, белого фосфора 45 - 60 ° С. Для того чтобы предотвратить возникновение горения, необходимо возбудить хотя бы одно из указанных условий. То есть надо удалить горючее вещество, охладить его ниже температуры воспламенения перекрыть доступ кислорода. Процессы горения сопровождают нас в повседневно жизни, поэтому каждый человек должен знать условия возникновения и прекращения горения, а также соблюдать необходимые правила обращения с огнеопасными веществами.

Круговорот кислорода в природе

Круговорот кислорода в природе. Применение кислорода, его биологическая роль

Примерно четвертая часть атомов всей живой материи приходится на долю кислорода. Поскольку общее количество атомов кислорода в природе неизменно, с удалением кислорода из воздуха вследствие дыхания и других процессов должно происходить его пополнения. Важнейшими источниками кислорода в неживой природе является углекислый газ и вода. Кислород попадает в атмосферу главным образом в результате процесса фотосинтеза, в котором участвует это-о-два. Важным источником кислорода является атмосфера Земли. Часть кислорода образуется в верхних частях атмосферы вследствие диссоциации воды под действием солнечного излучения. Часть кислорода выделяется зелеными растениями в процессе фотосинтеза с аш-два-о и это-в-два. В свою очередь атмосферное это-о-два образуется в результате реакций горения и дыхания животных. Атмосферное о-два расходуется на образование озона в верхних частях атмосферы, окислительные процессы выветривания горных пород, в процессе дыхания животных и в реакциях горения. Преобразование в-два в це-о-два приводит к выделению энергии, соответственно, на превращение это-о-два в о-два энергия должна расходоваться. Эта энергия оказывается Солнцем. Таким образом, жизнь на Земле зависит от циклических химических процессов, возможных благодаря попаданию солнечной энергии.

Применение кислорода обусловлено его химическими свойствами . Кислород широко используется как окислитель. Его применяют для сварки и резки металлов, в химической промышленности - для получения различных соединений и интенсификации некоторых производственных процессов. В космической технике кислород применяется для сжигания водорода и других видов топлива, в авиации - при полетах на больших высотах, в хирургии - для поддержания больных с затрудненным дыханием.

Биологическая роль кислорода обусловлено его способностью поддерживать дыхание. Человек при дыхании в течение одной минуты в среднем потребляет 0,5 дм3 кислорода, в течение суток - 720 дм 3 , а в течение года - 262,8 м 3 кислорода.
1. Реакция термического разложения калий перманганата. Составим уравнение химической реакции:

Вещество калий-марганец-о-четыре широко распространена в повседневно жизни под названием "марганцовка". Кислород, который образовался, проявляют тлеющей лучиной, которая ярко вспыхивает у отверстия газоотводной трубки прибора, в котором проводят реакцию, или при внесении в сосуд с кислородом.

2. Реакция разложения водород пероксида в присутствии марганца (IV) оксида. Составим уравнение химической реакции:

Водород пероксид также хорошо известен из повседневно жизни. Он может быть использован для обработки царапин и мелких ран (раствор аш-два-о-два мас три процента должен быть в каждой аптечке неотложной помощи). Многие химические реакции ускоряется в присутствии определенных веществ. В данном случае реакции разложения водород пероксида ускоряет марганец-о-два, однако сам марганец-о-два не расходуется и не входит в состав продуктов реакции. Марганец-о-два является катализатором.

Катализаторами называются вещества, которые ускоряют химические реакции, но сами при этом не расходуются. Катализаторы не только широко применяются в химической промышленности, но и играют важную роль в жизни человека. Природные катализаторы, которые получили название ферменты, участвующие в регулировании биохимических процессов.

Кислород, как уже отмечалось ранее, немного тяжелее воздуха. Поэтому его можно собрать вытеснением воздуха в сосуд, размещенную отверстием вверх.

Восстанавливали древесным углём в горне (см.), устроенном в яме; в горн мехами нагнетали, продукт - крицу ударами отделяли от шлака и из неё выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна процесса повышалась и часть науглероживалась, т. е. получался чугун; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна «чушка», «свинское » - английское pig iron. Позже было замечено, что при загрузке в горн не железной, а чугуна также получается низкоуглеродистая железная крица, причём такой двухстадийный процесс (см. Кричный передел) оказался более выгодным, чем сыродутный. В 12-13 вв. кричный способ был уже широко распространён. В 14 в. чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную («домницу»), а затем и в доменную. В середине 18 в. в Европе начал применяться тигельный процесс получения стали, который был известен на территории Сирии ещё в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлические шихты в небольших (тиглях) из высокоогнеупорной массы. В последней четверти 18 в. стал развиваться пудлинговый процесс передела чугуна в на поду пламенной отражательной (см. Пудлингование). Промышленный переворот 18 - начала 19 вв., изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в и его. Однако все существовавшие способы производства не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 в., когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 в. возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества.

Распространённость в природе. По содержанию в литосфере (4,65% по массе) занимает второе место среди (на первом). Оно энергично мигрирует в земной коре, образуя около 300 (, и т. д.). принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений (см. Железные). - земных глубин, оно накапливается на ранних этапах магмы, в ультраосновных (9,85%) и основных (8,56%) (в гранитах его всего 2,7%). В накапливается во многих морских и континентальных осадках, образуя осадочные.

Ниже приводятся физические свойства , относящиеся в основном к с общим содержанием примесей менее 0,01% по массе:

Своеобразно взаимодействие с. Концентрированная HNO 3 (плотность 1,45 г/см 3) пассивирует вследствие возникновения на его поверхности защитной окисной плёнки; более разбавленная HNO 3 растворяет с образованием Fe 2+ или Fe 3+ , восстанавливаясь до MH 3 или N 2 O и N 2 .

Получение и применение. Чистое получают в относительно небольших количествах водных его или его. Разрабатывается способ непосредственного получения из. Постепенно увеличивается производство достаточно чистого путём его прямого из рудных концентратов, или углём при относительно низких.

Важнейший современной техники. В чистом виде из-за его низкой практически не используется, хотя в быту «железными» часто называют стальные или чугунные изделия. Основная масса применяется в виде весьма различных по составу и свойствам. На долю приходится примерно 95% всей металлической продукции. Богатые (свыше 2% по массе) - чугуны, выплавляют в доменных из обогащенных железных (см. Доменное производство). Сталь различных марок (содержание менее 2% по массе) выплавляют из чугуна в мартеновских и электрических и конвертерах путём (выжигания) излишнего, удаления вредных примесей (главным образом S, Р, О) и добавления легирующих элементов (см. Мартеновская, Конвертер). Высоколегированные стали (с большим содержанием, и др. элементов) выплавляют в электрических дуговых и индукционных. Для производства сталей и особо ответственного назначения служат новые процессы - вакуумный, электрошлаковый переплав, плазменная и электронно-лучевая плавка и др. Разрабатываются способы выплавки стали в непрерывно действующих агрегатах, обеспечивающих высокое качество и автоматизацию процесса.

На основе создаются материалы, способные выдерживать воздействие высоких и низких, и высоких, агрессивных сред, больших переменных напряжений, ядерных излучений и т. п. Производство и его постоянно растет. В 1971 в СССР выплавлено 89,3 млн. т чугуна и 121 млн. т стали.

Л. А. Шварцман, Л. В. Ванюкова.

Как художественный материал использовалось с древности в Египте (для головы из гробницы Тутанхамона около Фив, середина 14 в. до н. э., Музей Ашмола, Оксфорд), Месопотамии (кинжалы, найденные около Кархемиша, 500 до н. э., Британский музей, Лондон),

Каждое вещество не является чем-то сплошным, оно состоит из маленьких частиц, представляющих собой молекулы. Молекулы из атомов. Отсюда можно сделать выводы, что определяемая масса вещества может охарактеризовать молекулы и атомы входящих элементов. В свое время Ломоносов большую часть работ посветил данной теме. Однако, многих любопытных естественников всегда интересовал вопрос: «В каких единицах выражается масса молекулы, масса атома?»

Но, для начала, окунемся немного в историю

В прошлом в расчетах за единицу массы атома всегда брали массу водорода (Н). И, исходя из этого, производили все необходимые расчеты. Однако, большинство соединений присутствуют в природе в виде кислородных соединений, поэтому массу атома элемента рассчитывали по отношению к кислороду (О). Что довольно неудобно, так как приходилось в расчётах постоянно учитывать соотношение О:Н, равное 16:1. К тому же, исследования показали неточность в соотношении, оно на самом деле было равно 15,88:1 или 16:1,008. Такие изменения послужили причиной для пересчета массы атомов для многих элементов. Было принято решение оставить для О значение массы 16, а для Н - 1,008. Дальнейшее развитие науки привело к раскрытию природы самого кислорода. Выяснилось, что молекула кислорода имеет несколько изотопов с массами 18, 16, 17. Для физики не приемлемо использование единицы, имеющей Таким образом, были сформированы две шкалы атомных весов: в химии и физике. Только в 1961 году ученые пришли к выводу, что необходимо создать единую шкалу, которая используется и в наши дни под названием "углеродная единица". В результате, относительная элемента представляет собой массу атома в углеродных единицах.

Способы расчета

Любого вещества состоит из масс атомов, которые образуют данную молекулу. Отсюда следует вывод, что масса молекулы должна выражаться в углеродных единицах, так же, как и масса атома, т.е. относительная атомная масса определяется с учетом относительной Как известно, с помощью можно определить число атомов в молекуле. Зная число атомов и массу молекулы, можно рассчитать атомную массу. Существует еще несколько способов ее определения. В 1858 году Канниццаро предложил метод, по которому относительная атомная масса определяется у тех элементов, которые способны образовывать газообразные соединения. Однако такой способностью не обладают металлы. Поэтому для определения их атомной массы был выбран метод, использующий зависимость атомной массы и теплоемкости соответствующего вещества. Но все рассмотренные способы дают только приближенные значения атомных масс.

Как была рассчитана точная масса атомов элемента?

Как показали научные исследования, из этих приближенных значений можно определить точное. Для этого только требуется сравнить данное значение с эквивалентом. Эквивалент элемента равен отношению относительной атомной массы элемента к его валентности в соединении. Из этого соотношения была определена верная относительная атомная масса каждого элемента.

Атомно-молекулярное учение определяет атом, как мельчайшую химически неделимую частицу. А если это частица, то она должна иметь массу, которая очень мала. Современные методы исследования позволяют с большой точностью определять эту величину.

Пример: m(H) = 1,674· 10 -27 кг

m(O) = 2,667 · 10 -26 кг Абсолютные массы

m (C) = 1,993 · 10 -26 кг

Представленные величины очень неудобны для проведения вычислений. Поэтому в химии чаще используют не абсолютные, а относительные атомные массы. Относительная атомная масса (Аr) представляет собой отношение абсолютной массы атома к 1/12 массы атома углерода. С помощью формулы - это можно записать так

1/12m(c) является величиной сравнения и называется 1 а.е.м.

1а.е.м. = 1/12· 1,993 · 10 -26 кг = 1,661 · 10-27 кг

Посчитаем Аr для некоторых элементов.

Аr(О) = = = 15,99 ~ 16

Аr(H) = = = 1,0079 ~ 1

Сравнивая относительные атомные массы кислорода и водорода с абсолютными, хорошо видны преимущества Аr. Величины Аr намного проще. Их удобнее использовать в вычислениях. Готовые величины Аr приведены в таблице Менделеева. Используя Аr элементов, можно проводить сравнения их масс.

Данное вычисление показывает, что атом цинка весит в 2,1 раза больше, чем атом фосфора.

Относительная молекулярная масса (Mr) равна сумме относительных атомных масс, входящих в нее атомов (безразмерна). Вычислим относительную молекулярную массу воды. Вы знаете, что в состав молекулы воды входят два атома водорода и один атом кислорода. Тогда ее относительная молекулярная масса будет равна сумме произведений относительной атомной массы каждого химического элемента на число его атомов в молекуле воды:

вычислите относительные молекулярные массы веществ.

Mr (Cu 2 O)=143,0914

Mr (Na 3 PO 4)= 163,9407

Mr (AlCl 3)= 133,3405

Mr (Ba 3 N 2)= 439,9944

Mr (KNO 3)= 101,1032

Mr (Fe (OH) 2)= 89,8597

Mr (Mg(NO 3) 2)= 148,3148

Mr (Al 2 (SO 4) 3)= 342,1509

Количество вещества (n) - физическая величина, характеризующая количество однотипных структурных единиц, содержащихся в веществе. Под структурными единицами понимаются любые частицы, из которых состоит вещество (атомы, молекулы, ионы, электроны или любые другие частицы).

Единицей измерения количества вещества (n) является моль. Моль – количество вещества, содержащее столько структурных элементарных единиц (молекул, атомов, ионов, электронов и т.д.), сколько содержится атомов в 0,012 кг (12 г) = 1 моль изотопа углерода 12 С.

Число атомов N A в 0,012 кг (12 г) углерода, или в 1 моль, легко определить следующим образом:

Величина N A называется постоянной Авогадро.

При описании химических реакций, количество вещества является более удобной величиной, чем масса, так как молекулы взаимодействуют независимо от их массы в количествах, кратных целым числам.

Например, для реакции горения водорода (2H2 + O2 → 2H2O) требуется в два раза большее количество вещества водорода, чем кислорода. Соотношение между количествами реагирующих веществ непосредственно отражается коэффициентами в уравнениях.

Пример: в 1 моле хлорида кальция = содержит 6,022×10 23 молекул (формульных единиц) - CaCl 2 .

1 моль (1 М) железа = 6 . 10 23 атомов Fe

1 моль (1 М) ионов хлора Cl - = 6 . 10 23 ионов Cl - .

1 моль (1 М) электронов е - = 6 . 10 23 электронов е - .

Для вычисления количества вещества на основании его массы пользуются понятием молярная масса:

Молярная масса (М) - это масса одного моля вещества (кг/моль, г/моль ). Относительная молекулярная масса и молярная масса вещества численно совпадают, но имеют разную размерность, например, для воды М r = 18 (относительная атомная и молекулярная массы величины безразмерные), М = 18 г/моль. Количество вещества и молярная масса связаны простым соотношением:


Большую роль в формировании химической атомистики сыграли основные стехиометрические законы, которые были сформулированы на рубеже XVII и XVIII столетий.

1. ЗАКОН СОХРАНЕНИЯ МАССЫ (М.В. Ломоносов,1748).

Сумма масс продуктов реакции равна сумме масс исходных веществ . В качестве дополнения к этому закону может служить закон сохранения массы элемента (1789, А.Л. Лавуазье) - масса химического элемента в результате реакции не изменяется . Эти законы имеют для современной химии определяющее значение, поскольку позволяют моделировать химические реакции уравнениями и выполнять на их основе количественные вычисления.

2. ЗАКОН ПОСТОЯНСТВА СОСТАВА (Ж. Пруст,1799-1804).

Индивидуальное химическое вещество молекулярного строения имеет постоянный качественный и количественный состав, не зависящий от способа его получения . Соединения, подчиняющиеся закону постоянства состава, называют дальтонидами. Дальтонидами являются все известные к настоящему времени органические соединения (около 30 миллионов) и часть (около 100 тыс.) неорганических веществ. Вещества, имеющие немолекулярное строение (бертолиды), не подчиняются данному закону и могут иметь переменный состав, зависящий от способа получения образца. К ним относятся большинство (около 500 тыс.) неорганических веществ.

3. ЗАКОН ЭКВИВАЛЕНТОВ (И. Рихтер, Дж. Дальтон, 1792-1804).

Каждое сложное вещество, независимо от способа его получения, имеет постоянный качественный и количественный состав. Следовательно, химические вещества взаимодействуют друг с другом в строго определенных (эквивалентных) соотношениях. Массы реагирующих веществ прямо пропорциональны их эквивалентным массам .

где Э А и Э В - эквивалентные массы реагирующих веществ.

4. ЗАКОН АВОГАДРО (А. Авогадро,1811).

В равных объемах разных газов, измеренных в одинаковых условиях (давление, температура), содержится одинаковое число молекул . Из закона следует, что:

Ø При нормальных условиях (н.у., Т = 273 К, р = 101,325 кПа) один моль любого газа занимает одинаковый объем - молярный объем (V m), равный 22,4 л/моль.

Ø Отношение масс равных объемов разных газов, измеренных в одинаковых условиях (относительная плотность газа по газу ), равна отношению их молекулярных (молярных) масс.

Чаще всего определяют относительную плотность по водороду или воздуху. Соответственно,

,

где 29 - средняя, точнее средневзвешенная, молекулярная масса воздуха.

Ø Объемы реагирующих газов относятся друг к другу и к объемам газообразных продуктов реакции как простые целые числа (закон объемных отношений Гей-Люссака).

Задача

Сколько граммов газообразного хлора нужно потратить и сколько граммов жидкого хлорида фосфора(III) получиться если в реакции использовано 1,45 граммов фосфора?

Р 4 (тв.) + Cl 2 (г.) = PCl 3 (ж.)

Решение: 1. Необходимо убедиться, что уравнение находиться в равновесии, т.е. необходимо проставить стехиометрические коэффициенты: Р 4 (тв.) + 6Cl 2 (г.) = 4PCl 3 (ж.). На 1 моль Р 4 я могу потратить 6 моль Cl 2 , чтобы получить 4 моля PCl 3

2. У нас есть масса Р 4 в реакции, следовательно, можно узнать сколько молей фосфора использовано. По Т.М. узнаем атомную массу фосфора ~ 31, это говорит, что 1 моль фосфора будет иметь массу 31 г (молярная масса), а атомная масса Р 4 будет 124 г. Найдем сколько молей в 1,45 г фосфора:

1,45 г – х моль х=0,0117 моль

124 г – 1 моль

3. Теперь узнаем сколько молей хлора нужно взять для использования 0,0117 молей фосфора. По равновесной реакции мы видим, что на 1 моль фосфора нужно взять 6 молей хлора, следовательно, хлора нужно взять в 6 раз больше. Считаем:

0,0117 х 6 = 0,07 молей хлора.

0,07 молей х 70,906 г (в 1 моле Cl 2) = 4,963 г Cl 2

5. Теперь найдем сколько граммов жидкого хлорида фосфора(III) получиться. Можно воспользоваться двумя разными решениями:

5.1. Закон сохранения массы 1,45г Р 4 (тв.) + 4,963 г. Cl 2 (г.) = 6,413 г. PCl 3 (ж.)

5.2. А можно воспользоваться способом как мы находили массу необходимого фосфора.

Примеры:

Условие

Определите массовую долю кристаллизационной воды в дигидрате хлорида бария BaCl2 2H2O

Решение

Молярная масса BaCl2 2H2O составляет:

М(BaCl2 2H2O) = 137+ 2 35,5 + 2 18 =244 г/моль

Из формулы BaCl2 2H2O следует, что 1 моль дигидрата хлорида бария содержит 2 моль Н2О.

Определяем массу воды, содержащейся в BaCl2 2H2O: m(H2O) = 2 18 = 36 г.

Находим массовую долю кристаллизационной воды в дигидрате хлорида бария

BaCl2 2H2O. ω(H2O) = m(H2O)/ m(BaCl2 2H2O) = 36/244 = 0,1475 = 14,75%.

Пример самостоятельно

1. Химическое соединение содержит по массе 17,56% натрия, 39,69% хрома и 42,75% кислорода. Определите простейшую формулу соединения. (Na 2 Cr 2 O 7).

2. Элементный состав вещества следующий: массовая доля элемента железа 0,7241 (или 72,41%), массовая доля кислорода 0,2759 (или 27,59%). Выведите химическую формулу. (Fe 3 O 4)

Пример (разбор) . Установите молекулярную формулу вещества, если массовая доля углерода в нем составляет 26,67%, водорода – 2,22%, кислорода – 71,11%. Относительная молекулярная масса этого вещества равна 90.

Решение 1. Для решения задачи используем формулы: w = ; n = ; x: y: z = n(C) : n(H) : n(O). 2. Находим химические количества элементов, входящих в состав вещества, приняв, что m(C x H y O z) = 100 г. m(C) = w(C) · m(C x H y O z) = 0,2667 · 100 г = 26,67 г. m(H) = w(H) · m(C x H y O z) = 0,0222 · 100 г = 2,22 г. m(O) = w(O) · m(C x H y O z) = 0,7111 · 100 г = 71,11 г. n(C) = = = 2,22 моль.; n(H) = = = 2,22 моль.; n(O) = = = 4,44 моль. 3. Определяем эмпирическую формулу вещества: n(C) : n(H) : n(O) = 2,22 моль: 2,22 моль: 4,44 моль. x: y: z = 1: 1: 2. Эмпирическая формула вещества – CHO 2 . 4. Устанавливаем истинную молекулярную формулу вещества: M r (CHO 2) = A r (C) + A r (H) + 2A r (O) = 12 + 1 + 2·16 = 45; M r (CHO 2) : M r (C x H y O z) = 45: 90 = 1: 2. Истинная молекулярная формула вещества – C 2 H 2 O 4 . Ответ : молекулярная формула вещества C 2 H 2 O 4 . Задача.Найдите химическую формулу вещества, в состав которого входит 9 мас. ч. алюминия и 8 мас. ч. кислорода. Решение: Находим отношение числа атомов: Ответ: Химическая формула данного вещества: . Относительная плотность газа Х по газу У - D поУ (Х). Часто в задачах просят определить формулу вещества (газа) в зависимости от Относительной плотности D - это величина, которая показывает, во сколько раз газ Х тяжелее газа У. Её рассчитывают как отношение молярных масс газов Х и У: D поУ (Х) = М(Х) / М(У) Часто для расчетов используют относительные плотности газов по водороду и по воздуху. Относительная плотность газа Х по водороду: D по H2 = M (газа Х) / M (H2) = M (газа Х) / 2 Воздух - это смесь газов, поэтому для него можно рассчитать только среднюю молярную массу. Её величина принята за 29 г/моль (исходя из примерного усреднённого состава). Поэтому: D по возд. = М (газа Х) / 29 Пример: Определить формулу вещества, если оно содержит 84,21% С и 15,79% Н и имеет относительную плотность по воздуху, равную 3,93. Пусть масса вещества равна 100 г. Тогда масса С будет равна 84,21 г, а масса Н - 15,79 г. 1. Найдём количество вещества каждого атома: ν(C) = m / M = 84,21 / 12 = 7,0175 моль, ν(H) = 15,79 / 1 = 15,79 моль. 2.Определяем мольное соотношение атомов С и Н: С: Н = 7,0175: 15,79 (поделим оба числа на меньшее) = 1: 2,25 (будем домножать на 1, 2,3,4 и т.п. пока после запятой не появится 0 или 9. В данной задаче нужно домножить на 4) = 4: 9. Таким образом, простейшая формула - С 4 Н 9 . 3. По относительной плотности рассчитаем молярную массу: М = D (возд.) 29 = 114 г/моль. Молярная масса, соответствующая простейшей формуле С 4 Н 9 - 57 г/моль, это в 2 раза меньше истинно молярной массы. Значит, истинная формула - С 8 Н 18 .
Похожие публикации